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Abstract

This paper demonstrates a large but little-known negative externality of the aviation
industry. Using a new instrument for air pollution from aircraft cruising, we show
that pollution is higher beneath overhead flight routes in ways uncorrelated with local
pollution. We combine this cross-sectional variation with the launch of new flight routes
to establish several findings. First, aircraft cruising persistently elevates local PM2.5
by 1-3 µg/m3. Second, PM2.5 has adverse impacts on infant health via lower birth
weights, including in 44 developing countries where data are scarce. Third, we leverage
the fact that propeller planes still use leaded fuel to show that 1 ng/m3 ambient lead
reduces fertility rates by 0.19%. Fourth, we generalize this in relation to the historical
phase-out of leaded fuel in vehicles, which our analysis suggests added over 2 million
people per year to the global population—making it among the most material public
health interventions. We provide this global gridded airline data product for use in
future research.
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1 Introduction

As a major user of fossil fuels, aviation’s contribution to global warming is well under-
stood. However, much less is known about its local pollution effects, particularly in areas
beyond airports. This paper focuses on the pollution externality of cruising, the overhead
flying of aircraft between locations. This setting is ideal for studying pollution’s impact
across a range of outcomes (e.g., infant health, fertility) and sub-populations, including a
host of developing countries—providing useful insights into how pollution impacts differ by
pollutant type, baseline pollution levels, demographics, and other characteristics.

Air pollution is highly studied. Its large and negative effects on human health and pro-
ductivity are well documented. But a challenge shared by all studies of the causal impact
of pollution is the non-randomness of exposure. Pollution intensity is correlated with so-
cioeconomic factors that drive health outcomes; for instance, at-risk populations are more
likely to live and work in highly polluted areas. The empirical literature has addressed
these selection concerns through the use of plausibly random variation exposure due to
wind (Deryugina et al., 2019), traffic patterns (Currie and Walker, 2011; Schlenker and
Walker, 2015), as well as variation across time and space in regulatory policy (Greenstone
and Hanna, 2014) and industrial entry and exit (Currie et al., 2015).

These innovative research designs, however, align to specific time periods, geographies, and
policy contexts, and thus may be limited in their external validity—particularly in the de-
veloping world. And in some settings, concerns remain about spatial sorting and endoge-
nous drivers of regulation, as well as endogenous responses by individuals to regulatory
change.

To this end, we introduce a new instrument for air pollution from aircraft cruising derived
from the global airline network, which can be visualized in Figure 1. Aviation accounts
for over 2% of global annual CO2 emissions,1 and the fuel combustion that emits CO2 also
produces air pollution. Much of this pollution is emitted during the cruising phase, which
accounts for over two-thirds of fuel consumption, as opposed to the takeoff and landing
phases (OAG, 2022).2 But unlike takeoff and landing, which occur near population cen-
ters, cruising emissions are largely unregulated and unmonitored. We show that air pollu-
tion is persistently elevated among populations beneath overhead flight routes across the
1 Aviation has contributed to 4% of global warming—a higher proportion due to non-CO2 emissions of

nitrogen oxides and water vapor (Klöwer et al., 2021).
2 While some particulate matter from cruising aircraft will be disbursed broadly via atmospheric currents

and weather conditions, on average, much will land in the vicinity directly beneath the flight path, espe-
cially due to wet deposition (i.e., binding to rain and falling to the ground).
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world. Given the well-established adverse impacts of air pollution, this represents a large
but little-known negative externality of the aviation industry.

A key insight for identification is that flight paths are generally determined by the short-
est geodesic distances (i.e., “great circle route”) between two airports in such a way that a
given location’s proximity to a flight path is random and thus exogenous to factors corre-
lated with pollution exposure. For intuition, Figure A1 shows the flight route between Los
Angeles and New York, which has dozens of direct flights per day. The shortest route hap-
pens to transect a certain part of Kansas. The idea is that the areas just north and just
south of this line should not be systematically different, which we verify later.

One concern is that areas near airports where flights are concentrated and pollution may
be higher for non-aviation reasons. Most empirical studies on aviation-based pollution
focus on areas near airports, and thus air pollution from aircraft takeoff and landing—
rather than from cruising (Schlenker and Walker, 2015; Zahran et al., 2017). This poses
spatial sorting concerns related to the composition of neighborhoods near airports. Areas
surrounding airports tend to be less urban with lower income and education levels com-
pared to other parts of the same city, a fact partly attributed to noise and air pollution
disamenities (Nelson, 1979; Sobotta et al., 2007; Tonne et al., 2018). For across-city com-
parisons, airports tend to locate in more developed cities that benefit from connectivity
and have generally higher pollution (Cidell, 2015).

To address such selection concerns, we drop locations within 100km of airports in all our
analyses, though we show our results are robust to their inclusion.3 To empirically test the
randomness of overhead airline assignment, we compare pixels with high and low airline
intensity by income, education, and other variables. Tables A18 (global) and A19 (US)
confirm that there is no systematic correlation with observables that may otherwise relate
to pollution exposure in areas away from airports—providing evidence that a location’s
exposure to overhead airline flights is effectively random.

To establish the validity of our instrument, we demonstrate the strong first-stage relation-
ship between overhead flight route intensity and ground-level measures of air pollution
(PM2.5). Figure 2 visualizes the variation in the raw data, whereby PM2.5 is persistently
1-3 µg/m3 higher, on average, in high versus low flight intensity locations. This represents
a material increase over average PM2.5 levels in our sample areas of 10 µg/m3 (US) and
19 µg/m3 (global). Combining cross-sectional variation in airline intensity across space
with the launch of flight routes over time, we confirm the first stage holds using several
3 Figure A3 shows 100km buffers near airports that are dropped from our sample in the robustness check.
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empirical designs: i) a panel model approach with the universe of all airline routes, ii) an
event study design involving the launch of new flight routes, and iii) a natural experiment
involving the grounding of flights after 9/11.

We confirm that our first stage results hold with the following robustness tests: using dif-
ferent distance cutoffs ranging from 0km (i.e., no observations dropped) to 1,000km from
airports; controlling for aircraft altitudes that may affect surface air pollution, as well as
wind and turbulence conditions that may affect pollution dispersion; using alternative
air pollution proxies such as aerosol levels as an outcome variable. And finally, to address
concerns that our simulated shortest-distance flight paths between origin and destination
may not precisely reflect actual airline routes, we replicate results using overhead aircraft
counts obtained from OpenSky sensor data.

Using our instrument, we estimate the impacts of air pollution on health across the world,
including in 44 developing countries where data are scarce. We first perform an IV regres-
sion to estimate the impact of in-utero pollution exposure on infant health outcomes using
USAID Demographic and Health Surveys (DHS). We find that an increase in PM2.5 by
1µg/m3 (2.3% over the DHS sample mean) increases the incidence of low birth weight by
one percentage point, which is 40% above the baseline incidence of 2.3%. We confirm that
this effect is not driven by potential confounders such as noise pollution from overhead
cruising aircraft.

In the second part of the paper, we turn from PM2.5 to a specific air pollutant, lead. We
use an identification strategy that leverages both our instrument and the type of aircraft
engine. Approximately 40% of today’s aircraft have piston-driven engines (i.e., propeller
planes) that use leaded fuel, while 60% have jet engines that use lead-free kerosene fu-
els. We thus differentiate between propeller plane flight routes (i.e., lead emitters) from
all others, which can be visualized in the map at the bottom of Figure 1. Using the US
EPA lead monitors, we find a strong first stage where propeller routes are associated with
higher ambient lead levels.

Focusing on fertility, an outcome linked to lead exposure in the literature, we find that a 1
ng/m3 ambient lead reduces fertility rates by 0.19%. This approach allows us to isolate the
effect of lead exposure on fertility after controlling for pollution and other unobservables
that may be associated with aircraft fuel combustion more generally (e.g., PM2.5, carbon
dioxide, nitrogen oxides, and carbon monoxide).

We conduct several robustness checks and extensions that confirm our core results. These
include: varying the model specification, weighting approach, and demographic controls
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and time trends employed; dropping DHS clusters and air lead monitors close to airports
in much the same spirit as the first stage; and accounting for road intensity as an addi-
tional control to account for vehicular emissions. We then use blood lead data from to pro-
vide evidence of a direct lead exposure channel.

To show our results are not an artifact of DHS survey data, we analyze the fertility re-
sponse in the US using county-level birth rates derived from vital statistics. We find sim-
ilar patterns whereby proximity to leaded airline routes leads to a decline in birth rates
in the US. Finally, we investigate how the link between lead exposure and fertility varies
across countries. Running our model separately for each country, we find that results hold
in all but three countries, minimizing concerns about external validity.

In a third part of the paper, we generalize our finding of lead’s impact on fertility beyond
aviation in the context of a historical policy. We leverage the timing of lead gasoline bans
for automobiles in countries around the world, starting with Japan in 1986 and ending
with Algeria in 2021. As with our analysis of PM2.5’s effect on infant health, we use DHS
data across 44 countries representing a population of 3.37 billion4. We calculate a measure
of fertility at the individual-year level. For identification, we use an approach similar in
spirit to Clay et al. (2021), computing for each DHS cluster the number of roads across a
0.1-degree grid. We find the fertility impact of the lead ban to be a function of road inten-
sity, confirming the intuition that lead exposure (and the benefit of a ban) would be con-
centrated among those in closer proximity to roads where vehicles combusted leaded fuel.
A back-of-the-envelope calculation implies that this policy increased global population by
2.2 million people per year—making it among the most material public health interven-
tions in history.

Our paper makes several contributions to the literature. At a high level, we uncover a
large but little-known negative externality of the aviation industry: air pollution from air-
craft cruising. We document aviation’s effect on infant health across the developing world
via elevated PM2.5, as well as reduced fertility via airborne lead exposure from propeller
planes. Outside of the immediate airport vicinity, these sources of pollution are largely un-
regulated.

This paper also contributes to understanding the unprecedented decline in fertility across
the world. This trend extends to developing countries, where in recent decades fertility
rates have converged with those of rich countries. While the secular decline is driven pri-
marily by economic and social changes, in many places there has emerged a gap between
4 Total based on the 2022 population of the 44 countries in the DHS sample.
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desired and attained fertility (Beaujouan and Berghammer, 2019). This paper sheds light
on the potential environmental factors that contribute to this “fertility gap” by impairing
fecundity (i.e., reduced ability to conceive due to physical issues)—an area of research with
relatively little quasi-experimental evidence.

We are the first to estimate the fertility impact of the ongoing use of leaded fuel in the
aviation industry. Others have identified the link between exposure to propeller planes and
blood lead levels (Zahran et al., 2017, 2023) in populations in close proximity to specific
airports—but no one has established the link between overhead propeller flights on lead
exposure in the general population, and then further linked this to fertility outcomes. The
large fertility effect we find is relevant for the policy discussion around the phase-out of
leaded fuel in aviation.5 Additionally, extending on Clay et al. (2021), our paper is the
first to estimate the impact of vehicle lead bans globally, with a particular focus on devel-
oping countries.

We also plan to release our airline flight route instrument as a gridded global data prod-
uct. As discussed above, a key challenge for empirical health researchers seeking to estab-
lish causal effects of pollution is the non-randomness of exposure. We hope this exogenous
source of variation in pollution exposure—–encompassing both common air pollutants like
PM2.5 as well as lead—–can be used in other research contexts, particularly where data
are scarce. Given the minimal research on the subject of air pollution from aircraft cruis-
ing, and the corresponding lack of awareness of its potential risk among the general pop-
ulation, we argue that residential sorting along overhead airline routes is not driving this
relationship.

Our paper proceeds as follows: Section 2 provides background on global fertility trends
and their potential connection to pollution and other environmental factors. We also dis-
cuss the literature on lead, specifically, and its impact on fertility and health outcomes.
Section 3 describes how we construct our measures of fertility, pollution, and the airline
route instrument, as well as other datasets used in this analysis. Section 4 establishes the
strength and validity of our airline instrument and describes our identification strategies.
Section 5 presents our regression results along with robustness tests, and Section 6 ex-
pands our fertility findings in relation to the global phase-out of leaded vehicle fuel. Re-
sults are discussed in Section 7 by exploring the scientific and policy implications of our
study—as well as further avenues of research using the data products we developed.
5 See recent EPA on leaded fuel in aviation: https://www.epa.gov/newsreleases/

epa-determines-lead-emissions-aircraft-engines-cause-or-contribute-air-pollution.
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2 Background

2.1 Global fertility trends

The total fertility rate (TFR) is defined as the average number of children that a woman
would bear throughout her lifetime, assuming she experienced current age-specific fertility
rates (i.e., the number of live births per woman across age cohorts spanning 15-49). Fertil-
ity rates influence both the size and composition of a population. Over the past 250 years
since the Industrial Revolution, fertility, together with economic outputs, has increased
rapidly worldwide. However, in the past 50 years, the global fertility rate has halved. In
2000, the world’s fertility rate was 2.7 births per woman, comfortably above the “replace-
ment rate” of 2.1, at which a population remains stable. Today it has decreased to 2.3 and
continues to decline, with over half of the global population residing in regions with fertil-
ity rates below replacement level.6

Fertility rates are shaped by a complex set of social, economic, cultural, and environmental
factors. Economic development generally spurs a decline in fertility (Hafner and Mayer-
Foulkes, 2013), as observed in more developed economies where urbanization, women’s
education, and changing lifestyles contribute to more family planning (Upadhyay et al.,
2014; Atake and Gnakou Ali, 2019). Cultural and religious beliefs, social norms, govern-
ment policies, and female empowerment all play important roles in shaping reproductive
choices. One discernible trend is the shift in fertility schedules towards increasingly higher
maternal ages, with a considerable proportion of women having their first kid at age 30
and older.7 Infant and child mortality rates further influence population dynamics, and
improved access to reproductive and maternal healthcare increases child survival rates and
can change perceptions of the ideal family size (Ackerson and Zielinski, 2017).

Fertility change has far-reaching socioeconomic impacts. In terms of demographic shifts, a
decline in fertility leads to an aging population, presenting challenges such as increased de-
6 Fertility patterns vary across countries and over time. In 2021, Niger has the highest fertility rate at

6.9, indicating that the average woman in Niger will bear seven children in her lifetime. Most countries
with the highest fertility rates are located in Africa. In contrast, South Korea has the lowest fertility rate
at 0.84. Several of the world’s most populous nations, including China, India, and the US, have below-
replacement levels of fertility, a trend observed in parts of Europe and North America since the 1970s.

7 Among US mothers in the 1930s, 2.5% had a first birth after 35. The proportion increases to 9-10% for
cohorts born between 1956 and 1960 (Mathews and Hamilton, 2014). By 2016, the fertility rate for the
30–34 age group was higher than that of 25–29 for the first time. 30% of all first births in the US oc-
curred among women over 30 (Martin et al., 2019). Similar increases in maternal ages are documented in
the EU (Eurostat, 2021), UK (Goisis, 2023), Asia (Kato et al., 2017; OECD, 2019), Africa (Negash and
Asmamaw, 2022), and other countries covered by the DHS (Bongaarts and Blanc, 2015).
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pendency ratios and support systems for the elderly. In contrast, a sudden surge in fertil-
ity can result in a young population, affecting education systems and necessitating invest-
ments in infrastructure and job creation. Fertility change also plays a role in shaping eco-
nomic dynamics: lower fertility rates usually lead to higher levels of female participation
in the workforce (Ahn and Mira, 2002; Adsera, 2004), contributing to economic growth.
Additionally, family size impacts household expenditure patterns, influencing demand for
goods and services. On a broader scale, fertility change affects national and global popula-
tion sizes, affecting innovation and investment, resource utilization, environmental sustain-
ability, migration flows, and social welfare programs.

2.2 Pollution and fertility

Environmental factors such as pollution are increasingly recognized as potential contribu-
tors to fertility patterns (Clay et al., 2021; Gao et al., 2022). Many studies have explored
the physiological and epidemiological links between pollution and fertility, which vary by
sex. For females, Canipari et al. (2020) classify environmental factors affecting fertility
into heavy metals, air pollutants, and endocrine disruptors.8 Heavy metals adversely affect
steroidogenic function, leading to fetal abnormalities and embryotoxicity (Aquino et al.,
2012), and oxidative stress induced by heavy metals alters hormone function and embryo
quality, contributing to female infertility (Rzymski et al., 2015).9 Air pollutants from non-
metal sources can lead to abnormal gametogenesis and diminished reproductive perfor-
mance (Carré et al., 2017; Conforti et al., 2018). For PM2.5, a 10µg/m3 increase is associ-
ated with a 2% increase in female infertility (Xue and Zhang, 2018).10

8 Endocrine disruptors, chemicals that interfere with endocrine system function, can mimic or block the
action of endogenous hormones. Such disruptions increase the risks of cancer, birth defects, and de-
velopmental disorders. Chlorinated hydrocarbons, a type of endocrine disruptor, can disturb follicular
steroidogenesis by modifying hormonal properties, synthesis, and function. These compounds are found
in various human reproductive components, and usually lead to decreases in estradiol secretion by antral
follicles (Gregoraszczuk et al., 2013). Exposure to polychlorinated biphenyls, a specific class of chlori-
nated hydrocarbons, has been linked to decreased concentrations of anti-Mullerian hormone and interfer-
ence with oocyte quality, fertilization, implantation, and embryo quality (Karwacka et al., 2019).

9 Exposure to heavy metals during pregnancy results in placental oxidative stress, which is linked to
preterm birth (Singh et al., 2020). Metals can cross the placental barrier and pose risks to the fetus.
Studies show an association between heavy metal concentration in the placenta and abnormal fetal
growth and development, as well as fetal damage (Falcon et al., 2003; Llanos and Ronco, 2009).

10 For air pollution, adverse effects include abnormal endocrine function, oxidative stress, and inflamma-
tion, which primarily affect ovarian function (De Coster et al., 2012). Studies reveal that women re-
siding in highly-industrialized areas experience a notable reduction in antral follicle count, a decrease
in the number of fertilizable oocytes, and a higher incidence of implantation failure compared to those
in less polluted areas (Conforti et al., 2018). Additionally, PM2.5 has been identified as compromising
oocyte quality and endocrine distributors.
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Environmental pollution also affects male fertility. Kumar and Singh (2022) reviews the
literature, categorizing pollution into hazardous chemicals, air pollution, working environ-
ment, and radiation.11 Air pollution is negatively associated with semen volume, sperm
concentration, motility, and normal morphology, leading to elevated sperm DNA fragmen-
tation and decreased fertility (Jurewicz et al., 2018; Zhang et al., 2020). Gaseous pollu-
tants like SO2 and NO2 negatively affect sperm quality. Ozone exposure decreases the
proportion of sperm with normal morphology, contributing to the increased incidence of
abnormal sperm morphology in males seeking infertility treatment (Wdowiak et al., 2019).
PM2.5 has been negatively linked to sperm motility, concentration, total count, head mor-
phology, and overall semen quality (Hansen et al., 2010).

2.3 Related literature on lead impacts

Lead exposure affects health, birth outcomes, and fertility. Historical records in the US
from the late 19th to early 20th century show a 39% higher infant mortality rate in ar-
eas with leaded water pipes compared with those without (Troesken, 2008). Analyzing
data from 172 cities between 1900 and 1920, Clay et al. (2014) find that the average wa-
ter lead content in regions with leaded pipes increased infant mortality by 19% relative to
the mean mortality rate. Recent years have seen a notable decrease in fugitive lead emis-
sions from 1988 to 2018 due to policies like the toxic release inventories, which has led to a
reduction in infant deaths (Clay et al., 2022).

In terms of fertility, the Flint water crisis, which was characterized by lead exposure, re-
duced the number of births by 7.5 per 1,000 women, constituting 12% of the average fer-
tility rate (Grossman and Slusky, 2019). The elimination of lead from gasoline has been
linked to increased fertility in the US: the observed reduction in airborne lead corresponded
with four additional births per 1,000 women, accounting for 6% of the mean fertility rate
(Clay et al., 2021). Furthermore, lead exposure affects birth outcomes. The Flint water
crisis is associated with a reduction in birth weights by 32 to 49 grams (Abouk and Adams,
2018; Wang et al., 2021). Additionally, a shift in US policy stringency regarding ambient
11 For males, environmental pollution compromises reproduction processes including spermatogenesis,

steroidogenesis, sertoli cell, and sperm functions (Selvaraju et al., 2021). Male reproductive organs are
particularly vulnerable to contaminants from environmental chemicals, leading to male infertility (Dis-
sanayake et al., 2019). A recent cross-sectional study investigated maternal occupational exposure to
potential endocrine-disrupting chemicals during pregnancy, notably pesticides, phthalates, and heavy
metals, and their impact on the semen quality of their adult sons. The study revealed a significant
correlation between maternal occupational exposure and low semen volume, as well as a reduced total
sperm count in their sons. A notable association was found between maternal heavy metal exposure and
low sperm concentration (Istvan et al., 2021).
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airborne lead pollution, leading to the relocation of lead battery recycling from the US to
Mexico, resulted in a 24-gram decrease in birth weight for infants born within two miles of
Mexican recycling plants (Tanaka et al., 2022).

Apart from health, lead exposure also affects education and learning performance. Empir-
ical evidence has shown the detrimental effects of lead on aptitude test scores, educational
attainment, and labor outcomes (Ferrie et al., 2012; Reyes, 2015; Aizer and Currie, 2019;
Grönqvist et al., 2020). Early-life exposure to lead has also been investigated as a poten-
tial factor contributing to shifts in violent crime trends and antisocial behaviors (Reyes,
2007, 2015; Aizer and Currie, 2019).

Variation in anthropogenic sources of lead, the primary contributor to human exposure,
has been exploited for natural experiments. In the context of water, studies have exploited
the presence of lead pipes (Ferrie et al., 2012; Clay et al., 2014), examined lead-related
drinking water crises in places like Flint and Newark (Grossman and Slusky, 2019; Dave
and Yang, 2022), and explored the effects of lead pipeline replacement (Marcus, 2023).
Others have focused on lead paint in a school context: studies have identified lead impacts
using classroom-level lead variation (Sauve-Syed, 2023) and comparing within-siblings per-
formance (Gazze et al., 2021). Focusing on industrial sources, studies have examined loca-
tions in proximity to plants with toxic release inventories (Clay et al., 2022) or near bat-
tery recycling sites (Tanaka et al., 2022) to explore lead impacts.

Closer to our paper, the existing literature has examined traffic-related lead emissions.
Some studies have taken advantage of regulatory changes in NASCAR gasoline content
(Hollingsworth and Rudik, 2021; Hollingsworth et al., 2020) or proximity to airports (Zahran
et al., 2017) as sources of variation. Other papers concentrate on the phase-out of the
ban on leaded gasoline in developed nations such as the US (Aizer and Currie, 2019; Clay
et al., 2019, 2021) and Sweden (Grönqvist et al., 2020). In contrast, our paper is the first
to explore the global phase-out of leaded gasoline, with a particular emphasis on its effects
in developing countries.

3 Data

We combine several datasets from satellite, ground-based monitors, radar trackers, socioe-
conomic surveys, and vital statistics. This enables us to construct measures and test ro-
bustness for our airline intensity treatment, first stage pollution effects, and downstream
health outcomes. Table 1 reports the time range, space coverage, and frequency of the dif-
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ferent datasets.

Fertility and infant health: The Demographic and Health Survey (DHS) includes
birth records from 44 countries obtained through 69 surveys, with a total number of 1,528,451
female respondents. Each interviewee’s record includes her month of birth, the month of
birth of her children, health conditions, and household characteristics. Our fertility out-
come of interest is constructed using birth month to create a birth dummy, and our main
infant health outcome is birth weight.

Household locations are recorded as coordinates, representing centroids of 10km clusters.
Households within a 10km radius of each centroid share identical coordinates. Our anal-
ysis on the impact of leaded gasoline bans specifically focuses on births occurring within
3 years preceding the ban to 5 years following the ban, a total of 9 years. Figure A4 vi-
sualizes the locations of DHS clusters in our sample. The clusters are mainly located in
Southeast Asia, Africa, and Latin America, and there are notable variations in coverage
within each country.

In addition, we incorporate fertility rates in the US from the National Vital Statistics Sys-
tem (NVSS). We aggregate individual-level birth records at the county-year level for the
extensive period from 1968 to 2021. Our primary outcomes of interest include the birth
rate, defined as the total number of births divided by the female population aged 15-49.
Furthermore, we use the infant mortality rate to investigate the impacts of air pollution.

Airline route intensity: Historical airline route information was purchased from OAG
Aviation, an aggregator of digital flight information. We obtain annual lists of all airlines,
encompassing both passenger and freight carriers, 1997-2023. Each record includes the air-
line number, operating company, aircraft type, origin airport, destination, and frequency
(the annual flight count). Airline routes are simulated based on the shortest trajectory
between origin and destination airports. There are over 65,000 distinct geographic flight
routes in a given year.

We observe aircraft engine models and categorize engines into propeller and jet planes.
Because propeller planes still use leaded fuel and jet engines use unleaded fuel, we differ-
entiate between these two types of routes and classify them as leaded and unleaded routes.
In Figure 1, we plot the locations of 58,613 unleaded and 7,899 leaded routes. Most un-
leaded routes are domestic and have short distances.

Figure A5 illustrates the changes in airlines over time. In the blue lines, we drop dupli-
cated airlines and focus on extensive margins, i.e., the presence of an airline operating
between origin-destination airports. There is a consistent growth in airport connectivity,
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particularly between 2004 and 2019. Connectivity decreased during COVID but recov-
ered in 2022. Red lines illustrate the intensive margin by summing the frequency of all
airlines. The increase in frequency corresponds closely with the airline count but experi-
ences a more pronounced COVID-related drop in 2020. This implies that despite airlines
continuing operations between two airports, there was a notable reduction in the overall
number of flights during the COVID period.12 The bottom panel focuses on new airlines
operating in a given year that were not operational in the previous year. The variation in
the number of new airlines exhibits a consistent pattern over time, with a slightly higher
number between 2003 and 2008. This pattern implies a steady expansion of connectivity,
consistent with the slope in the left figure.

We complement our simulated routes with data from OpenSky, which monitors the real-
time locations of operating aircraft. The dataset encompasses over 30 trillion ADS-B,
Mode S, TCAS, and FLARM messages collected from a network of more than 6,000 sen-
sors worldwide. Historical data are available from 2016, and the time frequency is at the
millisecond level. In each record, we observe each aircraft’s coordinates, altitude, speed,
heading direction, engine type, airline number, and operating company. We aggregate the
microdata as the count of overhead aircraft at the grid-week level for each 0.1-degree pixel
(∼10km2) to match the resolution of the global PM2.5 dataset described next.

Air pollution: We obtain PM2.5 data from the US EPA. The data are available at the
monitor-hour level 1998-2023. There are 2,344 monitors distributed across 1,020 counties,
covering all states. Locations of the EPA monitors are presented in Figure A2.

We also use global PM2.5 data from van Donkelaar et al. (2021). The authors employed
satellite-based aerosol optical depth (AOD) as inputs. To extrapolate near-surface PM2.5
concentrations, a chemical transport model was used to simulate the relationship between
AOD and ground-level PM2.5. The final dataset was produced by statistically fusing this
modeled data with ground-based monitor data. The PM2.5 data are presented at the pixel-
month level 1998-2021, with a spatial resolution of 0.1 degree. For robustness we also use
NASA’s MERRA-2 AOD product as an alternative measure of global air pollution.

Environmental lead: Ambient air lead data come from the US EPA monitor. There
are 2,467 air quality monitors measuring suspended lead particles. Locations of the EPA
air lead monitors are shown in Figure A2.
12 Some routes are classified as having the same origin and destination airport, which may reflect train-

ing flights, private charter flights, or site-seeing flights, for which there is no obvious way to designate
a flight path. However, such flights only account for 48,000 of the over 825 million individual flights
logged in the OAG dataset, or less than 0.006%.
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We also use soil lead data sourced from the USGS Background Soil Lead Survey. This
cross-sectional survey spans 4,857 labs or sampling sites. Each dataset entry includes sam-
ple collection time, collection site coordinates, layer designation (Top5, Ahorizon, Chori-
zon13), lead concentration, and concentrations of other metals.

Blood lead: Blood lead information is obtained from the Department of Public Health
of Massachusetts, where the state mandates reporting of blood lead testing results (105
CMR §460.070) under its Childhood Lead Poisoning Prevention Program. The depart-
ment conducts annual testing on a representative sample of children aged 9-12 months to
47 months. Specimens are analyzed at laboratories operating under Clinical Laboratories
Improvement Act standards for blood lead analyses. In cases where children either test
above a specified threshold or reside in high-risk communities, an additional follow-up test
is conducted at the age of four.

Our analysis focuses on the detect rate of high blood lead, defined as the number or pro-
portion of cases with confirmed blood lead levels exceeding 10µg/dL. This threshold is also
used by the department to identify high-risk sub-counties. Geolocations are recorded as
census tracts.

Road intensity: Road intensity data comes from the Global Roads Open Access Data
Set (gROADSv1), created by the Center for International Earth Science Information Net-
work (CIESIN), Columbia University. The dataset gathers the most reliable road data
from various countries into a comprehensive global road coverage. The road networks of all
countries have been topologically linked at their borders, and internal topology has been
adjusted for many countries. The representation of road networks spans from the 1980s
to 2010, contingent upon the country (with most countries lacking a confirmed date), and
spatial accuracy levels may vary.

Figure A4 presents a visualization of the road data. Each road segment is represented as
spatial lines. There is high road intensity in developed countries and regions, while lower
intensity is observed in forest or desert areas. Despite detailed locations, road characteris-
tics such as age, highway, width, or pavement type are not observed in the dataset.
13 Top5 indicates the soil sample is collected from a depth of 0 to 5 centimeters; Ahorizon represents the

topsoil where primarily minerals from the parent material are mixed with organic matter; Chorizon
refers to the deposit at Earth’s surface from which the soil developed.
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4 First stage: Airline routes as pollution instrument

4.1 Validity of instrument

The paper proposes a new instrument to address concerns about the non-randomness of
pollution exposure. Pollution intensity is correlated with socioeconomic factors that drive
health outcomes, such that at-risk populations are more likely to live in highly polluted
areas and work in occupations with high pollution exposure (Shapiro, 2022; Currie et al.,
2023). The empirical literature has addressed these selection concerns through the use of
plausibly-random variation exposure due to wind (Schlenker and Walker, 2015; Deryugina
et al., 2019), traffic patterns (Currie and Walker, 2011), as well as variation across time
and space in regulatory policy (Greenstone and Hanna, 2014) and industrial entry and exit
(Currie et al., 2015).

These innovative research designs, however, encompass specific time periods and geogra-
phies, and thus may be limited in their external validity—particularly in the developing
world. And in some settings, concerns may remain about spatial sorting (Heblich et al.,
2021; Chen et al., 2022) and endogenous drivers of regulation, as well as endogenous re-
sponses by individuals to regulatory change (e.g. Zou, 2021; Axbard and Deng, 2024).

To this end, we propose a new instrument, overhead airline intensity, as a source of exoge-
nous pollution exposure. Airline routes should be associated with high air pollution due
to fuel combustion. Flight cruising accounts for the majority of aircraft fuel use (62-92%
of total), as opposed to the takeoff and landing phases (OAG, 2022). Engineering papers
have sought to estimate aviation air pollution and its impacts. Barrett et al. (2010) show
that cruising above 35,000 feetaccounts for 80% of aviation’s air pollution impact and 1%
of air quality-related premature mortality from all sources. An increase in airborne ultra-
fine particles has been documented along airline routes in areas far from airports and in
both the upwind and downwind directions (Austin et al., 2021), suggesting that cruising
emissions influences pollution levels along airline trajectories.

Since the chemical composition and size of PM influences its toxicity, the external validity
of an aviation instrument for air pollution depends on the similarity of aircraft-generated
PM relative to other commonly-studied sources (e.g., vehicle exhaust, industrial emissions,
biomass burning). While we do not explicitly quantity these differences, we note that the
fossil fuels used in aircraft engines (formulations of kerosene for jets and gasoline for pro-
peller planes) produce PM precursor pollutants similar to other combustion sources. Thus
the health impacts of the secondary aerosols (H2SO4, HNO3, NH3) are likely comparable
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assuming no differential toxicity (Barrett et al., 2010).

Most empirical studies on air pollution from aviation, on the other hand, focus on areas
near airports, and thus pollution from aircraft takeoff and landing–rather than from cruis-
ing (Schlenker and Walker, 2015; Zahran et al., 2017). This poses concerns about spatial
sorting and the composition of neighborhoods near airports, which tend, on average, to
be less urban with lower income and education compared with other neighborhoods in the
same city. To address such selection concerns, we drop locations within 100km of airports
in all our analyses, though we show that results are robust to their inclusion, as well as
more distant cut-off thresholds.

We first look to the raw data to assess the strength of relationship between overheard
flight intensity and pollution. Figure 2 is a binscatter plot for the world (left) and the US
(right) using PM2.5 estimates from the satellite-derived gridded product (van Donkelaar
et al., 2021) and EPA’s on-the-ground monitors, respectively. In both cases the data show
a clear positive relationship, whereby high intensity grid cells have PM2.5 levels 1-3 µg/m3

higher than low intensity grid cells. The relationship holds when including all grid cells in
the sample, or when including only those located over 100km from airports.

We argue that once away from airports, a location’s exposure to overhead airline flights is
effectively random. This is true because air pollution along cruising routes does not factor
into the decision-making processes of either airlines or air traffic control entities. When de-
signing routes, connectivity between two cities is their primary objective. After the origins
and destinations are set, routes are chosen based on fuel consumption where the shortest
distance is generally optimal,14 as well as horizontal and vertical separation from other
flight routes. The intuition behind our research design is illustrated in Figure A1. While
our primary analysis computes overhead flight intensity using the geodesic distance be-
tween each origin and destination (i.e., the shortest path), we replicate our analyses with
an alternative dataset compiled from actual airline routes derived from transponders, find-
ing similar results.

To empirically test the randomness of overhead airline assignment, we compare pixels with
high and low airline intensity. To do so, we classify DHS clusters into two groups with air-
line intensity above or below the median and compare income, education, and nutrition-
related variables. In Table A18, Panel A shows that respondents living in high airline
intensity clusters have a slightly higher wealth index by 10%. For other characteristics,
14 Airline companies fly the shortest flight route possible. These routes are usually the

fastest and have lower fuel consumption because the plane is flying less distance. Source:
https://www.oag.com/blog/great-circle-routes-flight-paths
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high-intensity clusters have slightly lower education and nutrition levels but better access
to healthcare compared with those living in low airline intensity clusters; however, none
of these three differences are statistically significant. In Panel B, when dropping clusters
close to airports, there is no significant difference in any variables. Thus, we conclude that
overhead airline intensity is not systematically correlated with observable characteristics
that may be otherwise correlated with pollution exposure.

In a similar vein, we examine the similarity of covariates in US census tracts with high and
low airline intensities, using data from the American Community Survey. T-test results are
presented in Table A19. When compared to census tracts with low overhead airline routes,
those with high intensity show no differences in working hours, educational attainments,
demographic composition, and health status, but have higher income levels. In Panel B,
after excluding census tracts with airports or those within 100km of any airports, sample
sizes decrease due to the substantial number of airports in the US. We still observe large
p-values for all covariates, suggesting that the difference between high and low intensity
census tracts is not statistically significant. These balance tests support our hypothesis
that overhead airline intensity is as good as randomly assigned in the US and DHS coun-
tries.

More generally, given the minimal research on the subject of air pollution from aircraft
cruising, and the corresponding lack of awareness of potential exposure risks among the
general population, we argue that there is unlikely to be any sorting among residents based
on overhead airline route intensity.

We next provide evidence for the strength of our instrument by empirically testing the
first stage relationship between overhead airline route intensity and local air pollution us-
ing i) a panel model approach involving all airline routes, and ii) an event study design
involving the launch of new flight routes. We close this section 4 by applying our instru-
ment in an IV regression to estimate the impact of in-utero pollution exposure on infant
health outcomes globally.

4.2 Panel model approach

We first use a panel model to assess the impact of airline routes on air pollution with the
following specification:

Yijt = βAllRoutesit + γj + ηt + g(Trendjt) + εijt (1)
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where Yijt represents the concentration of PM2.5 reported from US EPA monitor i located
in state j on day t. We employ a 0.1-degree grid (∼10km2) around monitor i to compute
the count of airline routes. AllRoutesit is the airline intensity in grid cell i in year t. More-
over, we add state, year, month, and day-of-week fixed effects and quadratic time trends to
account for state-specific time-invariant unobservables that may affect pollution, as well as
temporal patterns and trends.

The coefficient β captures the impact of airline intensities on the surrounding PM2.5 lev-
els. We use both the full sample and a subset of grids excluding those near airports. The
identifying assumption is that overhead airline intensity is as good as randomly assigned,
as described in the section above and confirmed in Table A18.

AllRoutes is calculated using two steps. First, we simulate airline routes between origin
and destination airports using OAG data based on the shortest distance. Then we map
these routes on a 0.1-degree map, calculate the number of routes in each pixel, and re-
scale the value between 0 and 1. We plot the distribution of AllRoutes for all 6.5 million
0.1-degree grid cells worldwide in Figure A7. In the left panel, the histogram exhibits two
prominent spikes at 0 and 1. 30% of grid cells have 0 values, indicating areas with no over-
head airline routes. The other large fraction of grids have 1 values, signifying grids with
high airline intensity and suggesting a clustering of busy airline routes in specific regions.
The right panel illustrates the distribution of airline intensity after removing these two
spikes. Within the range of 0.1 to 0.9, a uniform distribution prevails, with a slight peak
around 0.3.

Table 2 shows the results of regressing air pollution on overhead flight intensity using Equa-
tion 1. The first two columns focus on the US using in-situ PM2.5 data from EPA moni-
tors. Column (1) includes year, month, day-of-week, and state fixed effects, and quadratic
time trends, while Column (2) replaces state fixed effects with county fixed effects. Co-
efficients on AllRoutes are positive and significant. Using the more spatially-granular
specification in Column (2), as AllRoutes increases by 1 unit (moving from the lowest to
highest possible intensity), the surrounding PM2.5 along airline trajectories increases by
1.35µg/m3. This increase in PM2.5 is equivalent to 13.5% of the mean and 18.4% of the
standard deviation.

We supplement US pollution monitor data with a global satellite-derived PM2.5 product.
We add country-specific quadratic trends to account for diverse patterns of PM2.5 over
time in each country, and include country fixed effects to address characteristics specific
to each country that remain constant over time. In Table 2 Column (3), we find a posi-
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tive and significant coefficient on AllRoutes. We observe a higher Y-mean, indicating that
average PM2.5 levels globally are nearly twice as large as those in the US. Specifically, as
AllRoutes increases by 1 unit, surrounding PM2.5 increases by 3.9µg/m3, constituting a
20% rise relative to the average PM2.5 levels.15 In Column (4), coefficient on AllRoutes

remains robust when Adm1 (the first administrative division within countries) fixed effects
are added. The global results are larger in both absolute and relative terms than the US
results, but of quantitatively similar magnitudes. Together, these results confirm our hy-
pothesis that overhead airline intensity significantly raises surrounding air pollution levels.

As discussed in Section 4.1, locations near airports may be systematically different than
other areas in terms of both population characteristics and pollution exposure. For the lat-
ter, airline intensity in pixels near airports is mechanically higher due to airplane cluster-
ing, and air pollution is also higher due to emissions from airplane taxiing and road vehi-
cles. To address this potential concern that our observed effects may be driven by airports,
we drop all pixels that are within 100km of an airport, as visualized in Figure A3.16 We
replicate our analysis using this sub-sample in Table A1. We find positive and significant
estimates on AllRoutes with magnitudes that are modestly larger than those in Table 2.

In Figure A8, we vary the distance cutoffs from 0 to 1000km. Results remain strongly ro-
bust regardless of the distance choice. Effect magnitudes and precisions decrease gradually
due to smaller sample sizes, as more pixels are dropped when using a larger cutoff to fil-
ter remote pixels. This suggests a substantial impact of aircraft emissions from cruising on
PM2.5 levels along trajectories beyond the vicinity of airports.

Robustness and heterogeneity

We conduct several robustness checks. First, we use a discrete value to code AllRoutes

by replacing all positive values with 1. Here we focus on the extensive margin. In other
words, as long as the grid is covered by at least one airline, we ignore the number of flights.
Results are presented in Table A2 Panel A. Coefficients on AllRoutes remain positive and
significant in all columns, affirming the robustness of our findings. The magnitudes are
consistently smaller compared to those in Table 2. This suggests that variation within the
0 and 1 range contributes to changes in PM2.5 to some extent. Neglecting these differ-
15 The R2 in Column (3) is 0.713, much larger than those in Columns (1) and (2). Within R2 also in-

creases from 0.0023 in Column (2) to 0.0143 in Column (3). This suggests that the predictive power
of airline intensity and country-specific controls is more substantial in the global analysis than in the US
analysis.

16 This drops 38.4% of grid cells for the US analysis, and 36.8% for the global analysis.

18



ences and assigning a value of 1 to all positive instances leads to the underestimation of
AllRoutes.

In a second robustness check, we exclude smaller values of AllRoutes. We categorize all
positive values into four quartiles and replace the bottom quartile with zeros. This prac-
tice focuses on grids with more substantial airline coverage. As the formation of PM2.5
typically requires both time and emission accumulation, larger emissions are more likely
to exert a pronounced impact on ambient PM2.5 levels. Results in Table A2 Panel B still
demonstrate positive, significant, and big point estimates on AllRoutes. Magnitudes are
also stable with this adjustment, which implies that the main results are predominantly
driven by grids with higher airline intensities.

For the third robustness check, we take into account airline frequency. We duplicate air-
line lists based on their frequency in each year and then re-simulate trajectories. This ad-
justment considers instances where the same origin-destination pair undergoes multiple
treatments and involves a greater number of flights in each year. The new airline intensity
remains scaled between 0 and 1. Grids featuring the same airline but with multiple fre-
quencies are naturally assigned higher values than those in the main result. Estimates in
Table A2 Panel C show that in comparison to grids with zero airlines, those with higher
frequencies experience higher PM2.5 levels by 0.82µg/m3 in the US and 3.6µg/m3 globally,
equivalent to 8.2% and 18.8% of the average PM2.5 levels respectively. Similar magnitudes
suggest that high frequency considering duplicated airlines is correlated with high intensity
considering the airline list, i.e., one airline per route.

Fourth, we show in Table A3 that our results are robust to varying our treatment of stan-
dard errors. For results using the US EPA data, we cluster standard errors at the county
level, year level, and state and year level in Panels A, B, and C, respectively. Results stay
strongly robust compared with those in Table 2. For global results, we use grid, year, and
country and year as clustering units in Column (3). Standard errors have minor changes
when clustering at alternative geographic units and get larger when clustering at the year
level. This suggests serial correlations in pollution across space within each year.

Satellite-derived measures of air pollution can introduce prediction error when studying
the impact of air pollution (Fowlie et al., 2019). For robustness, we use NASA’s MERRA-
2 AOD reanalysis product as an alternative measure of air pollution to complement our
primary gridded PM2.5 product from van Donkelaar et al. (2021), which uses satellite
signals and global ground-based air quality monitors for calibration of results. MERRA-
2 focuses on aerosol optical depth and uses a different set of satellite measures, on-the-
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ground measurements, and modelling approach. In Table A8, panel regression results us-
ing MERRA-2 data are similar to those using the van Donkelaar et al. (2021) product,
indicating the robustness of our results to using an alternative pollution data source.

We study the heterogeneity of the airline intensity-PM2.5 relationship across baseline PM2.5
and GDP levels. The intuition is that low-polluting areas with fewer other emission sources
may provide a clean first stage relationship. In an extreme case, in isolated and undevel-
oped areas like the polar regions, the only pollution source is likely the airline trajectory
across them. In contrast, we are more likely to encounter confounders if we run the anal-
ysis in high-polluting areas. In Table A9 Panel B, we separately estimate the first stage
relationship using grids in four quartiles based on baseline PM2.5. Estimates on AllRoutes

indicate that airline intensity moving from 0 to 1 increases surrounding PM2.5 by 16.3%,
13.7%, 2.1%, and 1.3% if we focus on pixels in the lowest to the highest quartile. The pre-
cision of estimates also gets worse as baseline PM2.5 levels increase. In a similar idea, Ta-
ble A9 Panel B displays heterogeneity across GDP. High magnitudes and precision are
found in both the high and low GDP groups. The nonmonotonic pattern may be due to
the fact that poorer areas have less development and lower pollution levels, while richer ar-
eas tend to have cleaner air quality. These patterns suggest that our proposed instrument
performs better in areas with fewer other sources of air pollution.

One other potential concern is the diversion of airline routes due to unfavorable weather,
which can divert flight from the shortest distance path. We directly address this concern
in the next subsection using actual aircraft locations from OpenSky rather than the sim-
ulated routes from OAG and find similar patterns between airline intensity and PM2.5.
But in addition, here we drop pixel-months with high turbulence or control for turbulence
for robustness checks. We use turbulent surface stress data from the ERA5 dataset. In
Table A10 Column (1), we drop the top 10% pixel-months with the highest turbulence lev-
els in the sample. Using the remaining sample, estimate on AllRoutes remains positive
and significant, confirming the robustness of our results. The magnitude of the effect in-
creases, likely because high turbulence often occurs simultaneously with high winds, lead-
ing to stronger pollution dispersion and lower ambient PM2.5 levels with the same level of
aircraft emissions. In Column (2), we use the full sample and add turbulence as an addi-
tional control variable. We still find that airline intensity significantly increases surround-
ing PM2.5 concentrations along the trajectory.

We next test if altitude plays a role in the airline intensity-air pollution relationship. First,
we test the heterogeneity across aircraft altitudes, which is also observable from the Open-
Sky data. In Table A15, we separately examine the relationship between PM2.5 and low-
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and high-altitude intensity using 30,000 feet as the cutoff. Panel A uses van Donkelaar
et al. (2021) data as outcomes and displays similar contributions of airline intensity to sur-
rounding PM2.5 whether aircraft fly at high or low altitude. In Panel B, using EPA PM2.5
monitor reports, we find low-altitude intensity has larger effects on surrounding pollution
than high-altitude intensity. This is consistent with the intuition that low-altitude emitters
may affect surface pollution more, while van Donkelaar et al. (2021) data uses the amount
of aerosol in the vertical column as inputs and is less sensitive to emitter altitude.

We also add altitude as an additional control and check how the first stage relationship
changes. In Table A16, we use each pixel-week’s average altitude across all covering air-
craft as an additional control. We find negative and significant estimates on Altitude, sug-
gesting low aircraft contribute more to surrounding air pollution. Estimates on All aircraft

remain positive and significant, and magnitudes are similar to those in Table A15 Column
(1), confirming our results are robust with altitude controlled.

In addition, we control for road intensity due to the large contribution of on-road vehicles
to air pollution. We add each pixel’s road segment length to the right-hand side. Results
in Table A17 show a positive Road coefficient, as expected, suggesting that vehicles in-
crease ambient PM2.5. But our main relationship remains robust whereby airline intensity
increases surrounding PM2.5 levels.

Alternate airline dataset

We test the validity of our instrument by replicating our analysis using a different airline
dataset and airline intensity aggregation approach. As discussed in Section 4.1, there is
a potential concern that our simulated routes, derived solely from origin and destination
information from OAG, may not precisely reflect actual airline routes. To this end, we use
overhead aircraft counts obtained from OpenSky sensor data. We aggregate the data at
the pixel-week level for each 0.1-degree pixel (∼10km2), which is the same resolution as
our main analysis using OAG data. The treatment variable is the total aircraft count. The
econometric specification is detailed below:

Yit = β1AllCountit + τt + γi + εit (2)

where Yit is the US EPA PM2.5 in monitor i on day t. AllCountit is the aircraft count in
the 0.1-degree grid where monitor i is located in the week of day t. For the global analysis,
Yit is the van Donkelaar et al. (2021) PM2.5 in grid i in year t. AllCountit denotes the
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airplane count in grid i, averaged over all weeks in year t.

In Table A4, we find positive and significant estimates on AllCount. Specifically, as the
overhead aircraft count increases by 1,000,000 during the specified week, ambient PM2.5
exhibits a rise of 0.44µg/m3 within the US and 2.55µg/m3 on a global scale. These results
affirm that our simulated routes effectively capture both the actual aircraft locations and
their impacts on surrounding PM2.5 levels.

4.3 Event study approach

One may still be concerned that our approach captures an unobservable characteristic that
both drives pollution exposure and happens to be correlated with a location’s overhead
flight intensity. To this end, we adopt an event study model to study the impact of in-
troducing new airline routes globally. We define treated grid cells as those that are cov-
ered by at least one new airline route in a given year using OAG data. We then generate
annual airline intensity maps at the grid-year level, which we denote as event time zero.
Treated grid cells are assigned an intensity value of zero in years -3 to -1, and a positive
value in years 0 to 5.

Figure A6 Panel A shows treated grids in the year 2000.17 There are discontinuous grids
where old and new airlines intersect. In other words, if two adjacent grids are both covered
by a new airline and one was previously covered by an old airline, it is not categorized as
a treated grid due to a non-zero value in the pre-period. There are few treated grids over
most US land areas. This is likely due to pre-existing airlines that commenced operations
prior to 2000. Panel B depicts treated grids in 2014. We see an increased number com-
pared with 2000, with the majority situated in oceanic regions and spanning across conti-
nents.

After generating event grid-years, we construct a balanced sample at the grid-year level
from three years before to five years after the airline opening, nine years in total. We use
alternative event windows as robustness checks. The econometric specification is shown
below:

Yit =
5∑

k=−3
βkDk

it + τt + γi + εit (3)

17 Treated grids are not present in the years 1997-1999, as these periods serve as baselines with zero airline
intensity. During these three years, we don’t know whether airline intensity is zero or unobserved in the
years -3 to -1. Similarly, treated grids are not available in 2015-2019, as the operational status of airlines
in the entire post-period after 2020 is unknown.
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where Yit is airline intensity in grid i in year t in the first stage. We use global PM2.5 from
van Donkelaar et al. (2021) as the outcome variable in the reduced form analysis. Dk

it is a
dummy that equals one if year t is k relative to the airline start year and zero otherwise.
Year −1 serves as baseline period and D−1

it is dropped. We add grid and year fixed effects
to account for grid-specific time-invariant characteristics and global time differences.

Coefficients β0 to β5 capture the impact of airline opening on surrounding airline inten-
sity and PM2.5 along the route. They are hypothesized to be positive. The identifying
assumption is that the opening of an airline route is not correlated with other unobserved
events along the route trajectory that might also influence air pollution. We test this hy-
pothesis by estimating β−3 and β−2, the impact in the pre-period. They are expected to
be not statistically different from zero.

We conduct a first stage to assess the impact of new airline openings on overhead airline
intensity. Figure 3 Panel A shows zero airline intensity in years -3 and -2, followed by a
sharp increase in airline intensity in the post-period—a result expected by construction.
The intensity value rises from 0 to 0.2 immediately after the opening of a new airline. The
estimates are precise with small standard errors. The event study figure serves as a valida-
tion of our definition of new airlines.

For our main analysis, we create a similar event study figure using PM2.5 as the depen-
dent variable. We add grid and year fixed effects, and plot residuals in Figure 3 Panel B.
In the pre-period, the difference in PM2.5 relative to year -1 is not statistically different
from zero, confirming the absence of a pre-trend. This suggests that the opening of an air-
line route is an exogenous event not correlated with other factors related to pollution in
grid cells along the airline. In the post period, PM2.5 increases by 0.1µg/m3 in year 0,
with a further increase to 0.3-0.4µg/m3 in years 1 to 5. This implies that the launch of
new airline routes leads to an increase in pollution along the flight path.

Tabular results are reported in Table 4 Panel A. In Column (1), a new airline opening me-
chanically leads to an increase in airline intensity by 0.19, 1.23 times the mean and 1.06
times the standard deviation. As van Donkelaar et al. (2021) PM2.5 is not available in all
grids and has more missing data over the ocean, we rerun the first stage in Column (2) us-
ing pixels with non-missing PM2.5 data. The estimate on Post is almost the same as that
using the full sample. In Column (3), the reduced form analysis shows a PM2.5 increase
of 0.38µg/m3 following the new airline opening. The observed effect represents a grid-year
level average in years 0 to 5, taking all days together. Since pollution emissions primarily
take place during airline operations, the daily effects are more striking on airline operating
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days or during busy air travel seasons.

As in Table A1 using the panel approach, we drop pixels within 100km to airports and
rerun the estimation. Figure A3 shows locations of 100km buffers surrounding airports.
Pixels within these red dots are dropped in this robustness check. Results in A6 Panel
A remain strongly stable. The newly treated grids with new airlines observe an aviation
intensity increase of 0.21 and a PM2.5 increase of 0.28µg/m3. In Figure A10, we present
the event study figure by excluding grids within 100 km of airports. Patterns are similar
to those in Figure 3. We see little evidence of pre-trends before the airline opening and a
PM2.5 increase of 0.3µg/m3 in the post-period, although this gets noisy in year 3. Over-
all, this suggests that the observed pollution increase extends along the entire flight path
vis-a-vis aircraft cruising rather than being driven by areas surrounding airports.

Alternate approach to defining treatment

As a robustness check, we use an alternative method to define treated grids based on the
raw OAG data, annual airline information. We use lists of actual origin-destination-year
and consider treated origin-destination pairs with zero airlines in years -3 to -1 and at
least one airline in years 0 to 5. After treated origin-destination pairs are filtered, we sim-
ulate actual airlines for the treated group during the period spanning years 0 to 5, with
covered grids being identified as treated grids. Figure A6 Panel C and D display treated
grids based on the alternative definition. Because grids are chosen based on airline lists,
we have continuous routes within the treated group. Similar to the first definition, we see
substantial differences in treated grids in 2000 compared with those in 2014, reflecting a
large number of new airlines opening in 2014.

Figure A9 replicates the event study Figure 3 using this alternative definition. Panel A
focuses on response in terms of airline intensity. In the pre-period, residuals of airline in-
tensity in years -3 and -2 reveal an absence of any discernible pre-trend, reaffirming the ex-
ogeneity of airline route openings. As expected, there is a distinct and substantial increase
in intensity from year 0 to 5. Panel B shows the air pollution response. PM2.5 exhibits a
significant increase of 0.5 in the post-period compared with the baseline year -1. Though
magnitudes are similar, the standard errors are larger than those in Figure 3 Panel B. This
imprecision may be attributed to the impact of pre-existing operating airlines within the
grid that started their operations in the preceding years. In summary, both definitions of
treated grids yield similar patterns in which there is a significant rise in air pollution fol-
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lowing the introduction of new airlines.18

Another robustness test is to employ an alternative event window. Specifically, we consider
the period from 4 years before to 6 years after the initiation of a new airline and re-choose
treated grids based on simulated airline intensity. The alternative event window results in
a smaller sample size, as additional years are required to ensure the absence of flight oper-
ations beforehand. In Figure A11, both panels depict similar event study figures with no
discernible pre-trends. There is a substantial increase in airline intensity by 0.2 and PM2.5
by 0.3µg/m3. In Table A7, estimates on Post are positive and precise. The magnitudes in
aviation intensity and PM2.5 increase exhibit a magnitude similar to that observed in the
main specification.

Natural experiment

We complement our event study of new flight routes with a natural experiment of aircraft
intensity reduction due to the flight ban in September 2001. Following the terrorist attacks
on September 11, the Federal Aviation Administration (FAA) issued a nationwide ground
stop, which led to the suspension of all commercial flights from September 11-13, 2001.
We investigate the impact of this flight ban on airlines’ surrounding PM2.5 levels in the
US. The hypothesis is that the flight ban leads to a decrease in PM2.5, particularly in re-
gions characterized by high overhead airline intensity. To test this hypothesis, we use the
OAG data and a difference-in-difference design built on Equation 1. We add Event on the
right-hand side, a dummy that equals one on these three days and zero otherwise. We also
add AllRoutes and its interaction with Event as treatment variables.

In Table A5, we find similar estimates on AllRoutes with and without event variables, af-
firming the robustness of our identified relationship between airline routes and air pollu-
tion. Estimate on Event is negative and significant, which suggests a national decrease in
PM2.5 on these three days regardless of locations within the US. Estimate on the interac-
tion term Event×AllRoutes is negative, significant, and of substantial magnitude, indicat-
ing a more pronounced decrease in areas characterized by high overhead airline intensity.
This flight ban natural experiment confirms our finding that airline intensity contributes
to an increase in surrounding PM2.5 levels.
18 For completeness, we also re-estimate Equation 3 using the alternative definition of treated grids and re-

port results in Table 4 Panel B. We find positive and significant estimates on Post in all three columns.
Table A6 Panel B confirms that when dropping grid cells within 100km from an airport, our results are
unchanged when using this alternative treatment definition, suggesting that the observed pollution re-
sponse is driven by aircraft cruising rather than airports.
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Estimating the overall magnitude

How big is the air pollution impact from the launch of a new airline route? Over each year
between 2000 and 2014, a total of 5,497 new airline routes (origin-destination pairs) were
established, as shown in Figure A5.19 On average, each airline covers 66,526 grids along
the trajectory, with each 0.1-degree grid encompassing about 121km2. Using event study
results in Table 4, we observe an increase in PM2.5 levels by 0.38µg/m3. The increase due
to each new airline is equivalent to 0.9% of the average PM2.5 levels in areas located be-
neath the flight path. Our findings underscore the substantial externality associated with
airline operations.

As a sanity check, we conduct a back-of-the-envelope calculation based on total fuel con-
sumption, airline route length, and the emission intensity of fuel combustion to validate
the increase in pollution within airline surrounding grids. Figure A12 presents the fuel
burn data for ten sample airlines departing from London Heathrow Airport (LHR). In the
left figure, it is evident that cruising accounts for 62-92% of the fuel consumption, surpass-
ing the combined fuel usage during taxiing, claiming, and approaching phases. This under-
scores the significance of potential air pollution along airline trajectories. The right figure
illustrates that a typical aircraft burns 2.7-13.9 liters of fuel per kilometer, depending on
the aircraft model and seating capacity. That said, covering one 0.1-degree grid results in
fuel consumption ranging from 30 to 153 liters. According to engineering estimates, air
pollutant emissions from aviation fuel combustion amount to 1.2g/kg-fuel (Owen et al.,
2022). Consequently, we anticipate a PM2.5 increase of 0.36-1.83µg/m3. This range aligns
with our point estimate detailed in Table 4.

4.4 IV: Health impacts of PM2.5

Our results demonstrate a robust link between overhead airline routes and local air pollu-
tion that extends beyond areas near airports. Our event studies show air pollution along
trajectories is significantly affected by new the opening of new airline routes and the flight
ban in September 2011. The pollution externality from airline cruising is meaningfully
large.

In this section, we examine the health impacts of air pollution resulting from overhead air-
line activity. To do so, we use geocoded birth outcome data from the Demographic and
Health Survey (DHS) of developing countries, as detailed in Section 3. Each birth outcome
19 Figure A13 shows a similar time series for propeller-based airlines. There is a slight decreasing trend in

airlines operating with leaded fuel, though it is still a substantial number.
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is coded with airline intensity and PM2.5 levels in the DHS cluster locations. For treat-
ment timing, we focus on pollution exposure in the in-utero period, average PM2.5 in the
9 months leading up to the birth.

In Table 3 Panel A Column (1), the reduced form analysis shows airline increases the oc-
currence of low birth weight. Specifically, as AllRoutes increases from 0 to 1, the proba-
bility of having a low birth weight increases by 0.018, relative to a mean of 0.022 (which
means that 2.2% of sample births are categorized as having a low birth weight). This is
consistent with existing findings that PM2.5 increases low birth weight occurrence (Gehrsitz,
2017; Jones, 2020; Alexander and Schwandt, 2022) in the context of low emission zones,
dust storms, and diesel car emission scandals. In Column (2), the incidence of very low
birth weight increases by 0.005 as AllRoutes increases from 0 to 1.

We also run an IV regression in Table 3 Panel B. PM2.5 instrumented by airline inten-
sity causes adverse birth outcomes. F-statistics are over 10, suggesting airline routes are
suitable instruments for PM2.5. As PM2.5 increases by 1µg/m3, or 2.3% over the sample
mean, the incidence of low and very low birth weight increases by 0.01 and 0.003.

As a robustness check in light of the borderline F-statistic above, we use the MERRA-
2 AOD product during the in-utero period as the endogenous regressor to replace van
Donkelaar et al. (2021) PM2.5 product. Table A11 displays similar IV regression results
using in-utero airline intensity as an instrument and low birth weight as outcomes. We
find that first stage strengths improve and that the F-statistic increases from 11 to 17. We
also observe positive and significant estimates on MERRA − 2 AOD, suggesting that in-
utero particle pollution worsens birth outcomes. These findings indicate that PM2.5 emit-
ted by airlines has a substantial externality on human health along the route.

Noise pollution

One confounding factor is noise pollution from aircraft. High airline intensity is correlated
with high noise exposure. Residents along the flight path may be negatively affected by
noise, which can also lead to worse birth outcomes independent of the air pollution chan-
nel. To address this concern, we collect aircraft model-specific noise information from the
European Union Aviation Safety Agency (EASA) noise database. We classify aircraft mod-
els into noisy and non-noisy categories using 90dB (the 3rd quartile) as the cutoff.20 We
then separately simulate more noisy and less noisy airline intensity.
20 We use 90dB to classify aircraft noise because noise regulations in construction, entertainment, and

boating use a 90dB threshold.
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We estimate the first-stage relationship between airline intensity and PM2.5 for more and
less noisy routes. In Table A12 Panel A, effects on EPA monitor-reported PM2.5 are sim-
ilar for more and less noisy routes. Point estimates are very similar when separately esti-
mating these two or running a horse-race. In Panel B, results using data from van Donke-
laar et al. (2021) show PM2.5 effects are slightly higher from less noisy aircraft, though
the two estimated coefficients are not statistically different from each other.

In Table A13, we estimate reduced form effects of airline intensity on birth outcomes.
Both noisy and less noisy routes increase the incidence of low birth weight. Effect sizes
are larger for less noisy routes, suggesting that adverse health outcomes are unlikely to be
driven solely by high-noise aircraft.

5 Lead and fertility

5.1 Model

In the next section of the paper, we investigate whether our airline instrument also works
for airborne lead. Fuel combustion emits pollutants, and the effect size and chemical com-
ponents of air pollution should differ across aircraft due to variations in fuel quality and
combustion efficiency. More importantly, propeller planes still use leaded fuel due to en-
gine design and engineering benefits21 whereas jet planes use unleaded fuel derived from
kerosene. Therefore, we apply our airline instrument separately to propeller-based routes
and other routes as an instrument for airborne lead, and then study the relationship be-
tween lead exposure and fertility outcomes.

We first test whether overhead leaded airline intensity is as good as randomly assigned.
Similar to Table A18, we check socioeconomic variables in DHS clusters but now focus on
clusters covered by many leaded routes that are operated by propeller planes and clusters
covered by many unleaded routes. In Table A34 Panel A, clusters with high leaded airline
intensity operated by propeller planes witness lower wealth index, education length, and
vaccination rates. In Panel B, after excluding clusters within 100km of airports, as we do
in our earlier analysis, statistical differences between the two groups are not significant,
suggesting a balanced distribution of covariates. This pattern supports the assumption
that overhead leaded airline intensity difference is not correlated with different socioeco-
21 Regarding engineering benefits, lead was added to fuel to improve octane rating. Lead also helps protect

exhaust valves and their valve seats.
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nomic variables after accounting for airport effects.

To investigate the impact of propeller airline routes on ambient air lead level, we conduct
estimate the following:

Yijt = α1LeadedRoutesit + α2AllRoutesit + Statej + Timet + g(Trendjt) + εijt (4)

where Yijt is the air lead measurement obtained from US EPA monitor i located in state
j on day t. LeadedRoutesit represents the count of propeller airline routes around moni-
tor i during year t. We adopt a 0.1-degree buffer around the coordinates of monitor i to
calculate the density of airline routes. For other controls, we add state fixed effects, cap-
turing state-specific time-invariant variations; year, month, and day-of-week fixed effects,
accommodating national temporal distinctions; and quadratic time terms, which assimilate
temporal trends inherent in air lead levels.

The coefficient of interest, α1, represents the effect of propeller airlines on the ambient air
lead levels. α2 is characterized as the “horse-race” term that increases with the intensities
of both propeller and jet airlines. Since only propeller routes contribute to lead emissions,
we hypothesize that α1 is positive and α2 approximates zero.

We employ the same empirical approach to examine the impact of propeller airline inten-
sity on soil lead levels, children’s blood lead levels, and fertility rates. For soil lead, coeffi-
cient α1 encapsulates the first-stage impact of propeller routes on soil lead concentrations.
For children’s blood lead and female respondents’ fertility rates, coefficient α1 shows the
reduced-form estimate on downstream outcomes.

5.2 Results

Estimation results of Equation 4 using the US EPA data are presented in Table 5. In Col-
umn (1), coefficient on LeadedRoutes is positive and statistically significant, indicating
that higher propeller plane intensity contributes to higher ambient air lead. Specifically, as
the propeller intensity increases from 0 to 1, the air lead concentration rises by 0.018µg/m3,
representing 13.2% of the mean and 2.7% of the standard deviation. In Column (2), we
add both LeadedRoutes and AllRoutes as right-hand variables. Point estimate on LeadedRoutes

remains stable and statistically significant, while the estimate on AllRoutes is insignifi-
cant.

In Column (3), the estimate on UnleadedRoutes is not statistically distinguishable from
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zero. This finding aligns with the use of current deleaded fuel in jet engines and serves as
a placebo test, indicating that unleaded routes have no discernible effect on surrounding
lead levels.22

Given that ambient lead eventually falls to the ground through deposition, we assess whether
propeller planes also contribute to increased soil lead levels. Table A20 presents our find-
ings. Large estimate on LeadedRoutes suggests the number of leaded routes operated by
propeller planes results in high soil lead levels. Specifically, for every increase of 1,000 in
leaded route count, the soil lead collected by the surrounding laboratory rises by 473.9
wt%.23 The consistency between air and soil results concludes that emissions from pro-
peller planes have a substantial and statistically significant impact on environmental lead
levels.

We next analyze health outcomes that are plausibly affected by environmental lead expo-
sure. We conduct a reduced form analysis using DHS fertility data in 44 developing coun-
tries as outcome variables. Results are reported in Table 6. After controlling for country-
specific quadratic time trends, we find female respondents are less likely to give birth in
areas with a high intensity of propeller planes. In Column (1), an increase in leaded route
intensity from 0 to 1 causes a 0.07 decrease in the probability of giving birth. In Column
(2) and (3), no discernible effect on fertility is found from unleaded routes operated by jet
planes. This finding is consistent with medical evidence and papers on lead exposure and
fertility decline discussed in Section 2.

We also study the fertility response in the US using county-level birth rates from the NVSS
as the outcome variable. Results presented in Table A21 exhibit similar patterns. Leaded
airline routes are associated with decreased birth rates, while unleaded routes show no ef-
fect. Specifically, a 1-unit increase in propeller airline intensity leads to a decline in the
birth rate by 2.2 percentage points, representing a 3.2% decrease relative to the mean
birth rate.

We next run an IV regression using airline intensity, ambient lead levels, and birth rates in
the US.24 In Table A23 Column (1), the OLS regression shows a negative and imprecise es-
22 Two connected airports are likely to operate planes of any type, so the intensity of leaded and unleaded

airline routes is highly correlated. This may lead to positive point estimates for UnleadedRoutes. We
verify this in Table A22. Panel A tests the correlation between unleaded airline route intensity and
leaded route intensity using all pixels. In Panel B, we only use pixels from the sample in Table 5 with
EPA lead monitors. Both correlations are positive and significant.

23 The unit of soil lead pollution is wt%, weighted percent.
24 We end up with a small sample size since not all counties have lead monitors or complete readings over

time. We conduct monitor-day level analysis in our first stage and county-year level analysis in the re-
duced form, both having large sample sizes. Now our IV regression is at the county-year level and only
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timate on Lead. In Column (2), after using propeller intensity in the in-utero period as an
instrument, the point estimate remains negative, and significance level improves. As ambi-
ent lead increases by 1 ng/m3, birth rate decreases by 0.167, equivalent to 0.19% relative
to the average birth rate. Additionally, F-statistics are moderately large, confirming pro-
peller intensity is a suitable instrument for ambient lead level. In Column (3), we use both
propeller and all airline intensity as IVs, and point estimate on Lead is similar to that in
Column (2). The F-statistic becomes smaller, which suggests all routes perform worse in
predicting surrounding lead than propeller intensity alone.

While we cannot run a similar IV using DHS data outside the US due to the lack of lead
monitors, we can compare our reduced form estimates of the effect of leaded airline inten-
sity on fertility (Table 6 (global DHS) vs. Table A21 (US)). Although the fertility mea-
sures are different, the effect size relative to the mean is smaller in the US than in the
DHS countries. This may be due to two reasons. First, higher nutrition levels contribute
to the mitigation of lead poisoning effects on human health. In the presence of the same
level of overhead airline activity of propeller planes, the enhanced nutritional status in the
US may play a role in alleviating fertility decline. Second, residents in developed countries
may have access to and implement better defensive measures, thereby shielding themselves
more effectively from lead exposure.

We test whether leaded and unleaded routes contribute differently to PM2.5 levels along
trajectories. The intuition is that propeller engines using different fuels may have differ-
ent emission factors compared to jet engines. Leaded routes may not only have higher
lead contamination but also higher general PM2.5 levels. In Table A14, we find that both
leaded and unleaded routes contribute to significant increases in surrounding PM2.5 levels.
The two estimates are not statistically different, suggesting that the two types of aircraft
have similar emission intensity for general particle pollution. This gives us higher confi-
dence that the reduced form estimates and effects on fertility reduction are driven by lead
pollution, rather than higher PM2.5 pollution.

Heterogeneity

We explore the heterogeneity of fertility responses across different age groups. Results are
shown in Table A24. Similar point estimates on LeadedRoutes suggest that the lead effect
remains consistent regardless of the respondents’ ages. For teenage pregnancies below 19
years old, an increase in propeller plane intensity causes a reduction in the likelihood of

includes those county-years with lead readings.
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birth by 0.06. For older mothers above 36, the effect size is comparable, with a decrease in
the likelihood of birth by 0.058. This suggests that the impact of lead exposure on fertility
is widespread and does not exhibit significant variation across different age cohorts.

We also examine heterogeneity across nutrition levels, motivated by distinct responses ob-
served in DHS countries and the US. To measure nutrition levels, we use female respon-
dents’ hemoglobin concentration and categorize them into four quartiles. The subgroup
estimation results presented in Table A25 reveal that the lead effect remains consistent
across these nutrition quartiles. This could be attributed to the similarity in nutrition and
socioeconomic conditions among the respondents in the DHS data.

Robustness

We conduct several robustness checks. First, we employ unweighted regression in the DHS
analysis, treating each female respondent with equal weight. The results are presented in
Table A26, revealing patterns very similar to those in the main specification. Second, we
conduct a regression without age controls, excluding both linear and quadratic terms from
our model. The results are reported in Table A27, affirming the robustness of our findings
across alternative age specifications.

Next, we drop DHS clusters and air lead monitors close to airports that host at least one
propeller plane in our sample period. This speaks to the potential concern that our ob-
served effects are solely driven by areas in close proximity to airports. We use 100km as
a cutoff distance and only keep remote areas. Results in Table A28 and A29 show that
both air lead and fertility effects remain stable with the subsample analysis. We use an
alternative cutoff, 200km, to define remote areas. In Table A30 and A31, estimates on
LeadedRoutes are quite similar to those in the main analysis.

Furthermore, we add road intensity as an additional control given the lead emission from
leaded fuels on roads. Given the late phase-out of leaded gasoline in developing countries,
on-road lead emissions could affect our analysis. In Table A32, air lead results using the
US EPA data show the inclusion of road intensity variable does not affect the air lead find-
ings. Estimates on Road are small and imprecise. This is consistent with the earlier re-
moval of leaded gasoline in the US around the 1980s, and in our study period road emis-
sions no longer include lead and would not affect ambient air lead. In Table A33, focusing
on the DHS countries, road intensity leads to a decrease in fertility, captured by negative
estimates on Road. Estimates on LeadedRoutes are similar with and without road inten-
sity controlled, confirming our findings are not affected by on-road lead emissions.

32



Discussion on mechanism and magnitude

The mechanism of our findings is rooted in direct lead exposure. Human exposure to lead
has known adverse effects on reproductive functions, leading to a natural decrease in the
probability of giving birth. We use blood lead data to verify the exposure channel using
detect rate data from Massachusetts. In Table A35, high numbers of overhead propeller
planes lead to a higher detect rate of blood lead. As leaded routes move from 0 to 1, the
detect rate rises by 2.0‰, equivalent to 33% of the average and 9.8% of the standard de-
viation. In contrast, unleaded routes operated by jet engines do not have significant effects
on blood lead levels.

How does the link between lead exposure and fertility vary across countries? To answer
this question, we estimate α1 separately for each country in the DHS dataset and the US.
Results are visualized in Figure 4. Negative estimates indicate that all but three coun-
tries experience persistent declines in fertility due to high propeller plane intensity. Our
estimated link between propeller plane emissions, lead pollution, and fertility reduction is
consistent with the medical literature, and is similar across the world. Given the robust
patterns and extensive country coverage, our findings gave little concern about external
validity.

In terms of the magnitude difference, the fertility decline due to a 1-unit increase in leaded
airline emissions is more pronounced in East and Northwest Africa compared to the US
and South Asia. Apart from the nutrition channel discussed in Table A25, another pos-
sible explanation is the nonlinear impact of lead exposure on fertility. East and North-
west Africa typically have higher background levels of lead from traffic and food sources
(Harper et al., 2003; Ford and Stein, 2016). If lead exposure has a convex toxicity towards
reproductive functions, the marginal increase in lead emission has a more severe effect on
fertility reduction, captured by bigger magnitudes in African countries. One major source
of lead emissions is the leaded gasoline in on-road vehicles. While the US implemented
leaded gasoline bans in 1990, these bans were gradually phased out in Africa until 2021,
leading to generally higher background lead levels in these developing countries. We fur-
ther evaluate the impact of the leaded gasoline ban in Section 6.
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6 Policy extensions: Leaded fuel ban

6.1 Model

In this section, we generalize our findings in relation to the global phase-out of leaded
gasoline in road vehicles over the course of 35 years, which started with Japan in 1986
and ended with Algeria in 2021. To do so, we obtain the timing of leaded fuel bans at the
country level and employ an event study design to examine the effects of fuel bans on fer-
tility rates. The econometric specification is as follows:

Yijt = βPostjt + f(Ageit) + Countryj + Timet + g(Trendjt) + εijt (5)

where Yijt represents the birth indicator for individual i in country j during year t. Our
analysis focuses on female respondents of reproductive ages, 15 to 49, surveyed from three
years before to three years after the enactment of the fuel ban. We construct a panel span-
ning seven years surrounding the year of the ban and code Yijt based on female respon-
dents’ decisions of giving birth in year t. On the right-hand side, variable Postjt is an in-
dicator that equals one if the leaded fuel ban has been implemented in country j in year t

and zero otherwise. Variable f(Ageit) incorporates quadratic terms of the age of female i

in year t. To account for country-specific, time-invariant factors and global temporal dis-
parities, we introduce country fixed effects and year fixed effects. Furthermore, we intro-
duce country-specific quadratic trends in g(Trendjt) that capture the distinctive fertility
patterns of each country.

The coefficient of interest is β, which captures the effect of the leaded fuel ban on the fer-
tility rate at the country-year level. β is the average treatment effect taking all 44 coun-
tries across the three-year post-ban periods together.

Given the potential different impacts of the ban on fertility rates across countries, we ex-
tend our investigation by assessing within-country variations. We compare DHS clusters
across different levels of road intensity and employ a difference-in-difference framework, as
outlined below:

Yijkt = β1Postjt + β2Roadk + β3Postjt × Roadk + Countryj + Timet

+f(Ageit) + g(Trendjt) + εijt

(6)

where Yijkt is the same group of female respondents in DHS cluster k. Roadk is the count
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of road segments near cluster k. We draw a buffer of 0.1 degrees around the geographi-
cal coordinates of cluster k to calculate road count. Other controls are the same as those
in Equation 5. β3 captures the impact of the leaded gasoline ban between clusters with a
higher density of road segments compared to those with a lower density.

6.2 Results

Results of estimating Equation 5 are reported in Table 7 Panel A. In Column (1), our
sample includes both geocoded and non-geocoded respondents. The estimate on Post is
positive and statistically significant. Consistent with intuition, there is a substantial in-
crease in the likelihood of giving birth after the leaded fuel ban by 0.072 units, equiva-
lent to a 24% increase relative to the average birth probability. In Column (2), we only
use respondents with geocodes. The estimate on Post remains positive and precise, and
the magnitude becomes smaller. There is a 0.045 unit increase in birth likelihood after the
fuel ban, 16.4% relative to the mean. In Column (3) and (4), we add administrative 1 area
fixed effects and implement an alternative clustering method. Both practices yield robust
results of fertility increases after the ban.

We explore the within-country variations by estimating Equation 6. Results shown in Ta-
ble 7 Panel B reveal positive and statistically significant estimations for Post. The effect
magnitudes are very similar to those in Panel A, underscoring the robustness of our results
at the country-year level after the leaded fuel ban. Focusing on the interaction term, esti-
mates on Post × Road are positive and precise. This suggests that DHS clusters with high
road intensities derive more substantial benefits from the leaded gasoline ban in compar-
ison to those with lower road intensities. For each unit increase in road count, the likeli-
hood of giving birth among female respondents rises by 0.023 units. The finding is consis-
tent with the intuition that areas with higher road intensity experience greater exposure to
leaded gasoline pollution before the ban’s implementation. As a result, female respondents
within these regions are more significantly affected by pollution and, consequently, stand
to gain more from the removal of leaded gasoline.

We investigate the heterogeneity across different age groups of female respondents. In Ta-
ble A36, the most striking effects are observed in the younger age group, while the impact
of the leaded fuel ban on the older group exhibits a flipped sign. This indicates that the
phase-out of leaded gasoline has a bigger impact on teenage pregnancies. The probability
of teenage childbirth has risen significantly by 0.226 units, accounting for 88.3% of the av-
erage. This effect size is smaller for individuals aged 20-35, where the increase amounts to

35



0.032 units, equivalent to 11.4% of the average value.

Furthermore, we explore the heterogeneity across different nutrition levels. This practice is
inspired by medical literature suggesting that lead exposure might have a lesser impact on
individuals with better nutritional status. Consequently, the prohibition of leaded gasoline
should potentially yield more pronounced benefits for those with lower nutrition levels. To
gauge nutritional status, we employ a proxy indicator based on the DHS question regard-
ing blood protein levels. The findings presented in Table A37 indicate that female respon-
dents in the highest quartile of blood protein levels experience the least pronounced in-
crease in the likelihood of childbirth. Specifically, this effect has a magnitude of 0.03 units,
equivalent to 11.4% of the mean value. Conversely, the remaining three quartiles exhibit a
comparable rise in the probability of childbirth, amounting to 0.05 units or 18.7% relative
to the average likelihood.

Our main specification employs weighted regression using DHS sample weights. To assess
the robustness of our findings, we use unweighted regression and find similar estimates in
Table A38. Furthermore, another robustness check is to exclude age controls. Table A39
reveals consistent and stable results, suggesting leaded gasoline bans significantly increase
fertility rates especially in areas with high road intensities.

Apart from the DHS, we also use fertility data from the US National Vital Statistics Sys-
tem (NVSS). The birth rate at the county-year level covers 1980 to 2021.25 Results of esti-
mating the single difference model are reported in Table A40 Panel A. Similar to the pat-
tern using the DHS data, positive and significant estimates on Post suggest that there is
a substantial increase in birth probabilities at the country-year level subsequent to the
removal of lead content from vehicle gasoline. Coefficients remain robust with state or
county fixed effects, national or state-specific time trends, and alternative clustering meth-
ods of standard errors.

The measured effect size displays an increase in birth probability by approximately 0.028
units or 4.2% compared to the average birth rate. This difference in magnitude may be
attributed to two factors. First, the heterogeneity across nutrition levels in Table A37 sug-
gests that female groups with better nutritional status exhibit smaller benefits from the
prohibition of leaded gasoline. In contrast to the developing nations in South Asia and
Africa that constitute our DHS sample, residents of the US have relatively better nutri-
tional levels, consequently experiencing reduced adverse impacts from lead exposure. As a
result, there is a relatively smaller impact of lead content removal on US births. Second,
25 We conduct a robustness check using all NVSS data between 1968 to 2021. Table A41 shows strongly

robust results as those using the shorter sample.
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vehicle gasoline emissions might constitute a significant proportion of lead sources within
developing countries. In contrast, the US witnesses other notable sources including indus-
trial emissions, aviation, lead-based paints, and water pipelines. Therefore, the restriction
on fuel content assumes a relatively more pronounced role in shaping lead exposure and its
repercussions within developing countries.

In Table A40 in Panel B, we explore within-country variation by computing road inten-
sities at the county level and adding the interaction term. Results displayed in Table 7
Panel B support the observed pattern that high road intensity leads to a more substantial
increase in birth rates after lead removals. For each 0.1 unit rise in road count, equivalent
to 1.09 times the average count and 0.854 times the standard deviation, the correspond-
ing birth dummy experiences a statistically significant increase of 0.0036 units or 0.539%
relative to the average. Our findings show that both economically advanced and develop-
ing countries reap positive outcomes from the eradication of leaded gasoline, leading to
observable enhancements in fertility rates. The global phase-out of leaded fuel emerges as
a beneficial intervention, effectively countering the prevailing trend of declining fertility
rates.

6.3 Effects on population

What is the magnitude of the effect of the global phase-out of leaded gasoline? We ob-
tain population data at the country-year level from the World Bank, World Development
Indicators. We conduct a similar event study using Equation 5. Estimation results are pre-
sented in Table A42. The population increase following leaded gasoline bans averages 4.5%
over a post period of 15 years. Based on this point estimate of percentage change and the
actual population figures, the gasoline ban is estimated to result in an additional 2.2 mil-
lion people per year globally from the year after the ban to 15 years later. This increase
could be attributed to a surge in new births, as discussed in the fertility effect in Section
5, and a reduction in deaths since lead also affects adult health. The substantial magni-
tude of the population increase underscores the long-term impact of the gasoline ban on
macro socioeconomic outcomes for future research.

We also compare the magnitude of fertility impacts resulting from the ban on leaded gaso-
line with those from the intensity of propeller airlines. The prohibition of leaded gasoline
causes an increase in the likelihood of giving birth by 0.044, equivalent to 16.1% of the
mean (0.274). In contrast, a 1-unit increase in propeller plane intensity leads to a change
in the fertility dummy of 0.071 or 25.9% of the average (0.274). The corresponding in-
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crease in ambient air lead due to propeller plane intensity is 0.018 out of 0.152µg/m3,
11.8% relative to the mean. Assuming a linear relationship between lead exposure and fer-
tility, the global phase-out of leaded gasoline is equivalent to an average reduction in air
lead by 0.011µg/m3, or 7.4% of current air lead levels. Furthermore, the fertility impact
of the leaded gasoline ban is equivalent to the removal of half of the global propeller plane
airlines. These findings affirm the effectiveness of the leaded gasoline ban in reducing envi-
ronmental lead levels. We also underscore the importance of future policies to address lead
emissions from the aviation sector.

6.4 Effects on teen pregnancy

We further assert that the lead ban can explain the increase in teen pregnancy. Teen preg-
nancy is important given its public health implications. Adolescents are often not fully
physically or emotionally developed, so teen pregnancy could lead to increased maternal
and infant health risks. Also, teen pregnancy affects young parents’ educational attain-
ment, employment, financial stability, and long-term economic struggles. From a societal
perspective, teen pregnancy rates affect long-term demographic trends in a population.
In the US, the recent temporal trends in teen pregnancy have been a public health puz-
zle: the temporary reversal of the half-century secular decline in US teen pregnancy rates,
when rates increased by 20% in the late 1980s and early 1990s–the exact period in which
the EPA effectively reduced the amount of lead allowed in gasoline to zero.

To examine the impact of leaded gasoline bans on teen pregnancy, we obtain data from
the United Nations Population Division, World Population Prospects. It measures teen
pregnancy rates for mothers 15-19 at the country-year level for 237 countries or areas,
1960-2021. We use these rates as the dependent variable and re-estimate the single differ-
ence model in Equation 5. Table A43 displays the estimation results. Following the leaded
gasoline ban, teen pregnancy shows an increase of 2.6 births per 1,000 young women, which
is 3.5% relative to the average rate. Compared with the findings in Table A42 and 7, the
magnitude is slightly smaller, indicating that the high-age group is more susceptible to
lead exposure and experiences greater benefits from on-road lead removal.

7 Discussion

This paper addresses a critical challenge in the study of the causal effects of air pollution
by introducing a novel instrument derived from the global airline network. Our analysis
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demonstrates that air pollution is persistently elevated beneath overhead flight routes,
offering a unique source of exogenous variation in pollution exposure. By leveraging this
instrument, we make several important contributions to the economics literature.

We uncover a previously overlooked negative externality of the aviation industry, air pol-
lution from aircraft cruising. We examine two pollution constituents: particulate matter
and lead. For the former, we provide robust evidence of the adverse impacts of PM2.5 on
infant health, including in 44 developing countries where data are limited. This finding
aligns with previous research on the harmful effects of air pollution on birth outcomes. For
lead pollution, we leverage differential pollution exposure patterns based on aircraft en-
gine type. We demonstrate a large fertility impact among the general population in areas
beneath propeller plane routes via increased exposure to airborne lead.

We then generalize our findings regarding lead’s impact on fertility to the context of his-
torical lead gasoline bans in countries worldwide. Our analysis suggests that these bans,
which aimed to reduce lead exposure from vehicles, had a substantial positive impact on
fertility rates and, as a result, global population growth—making them among the most
material public health interventions in recent memory.

In addition to these specific contributions, we provide a global gridded airline data prod-
uct that can be used in future research to address the non-randomness of pollution expo-
sure. This data product offers researchers a tool to investigate various aspects of air pol-
lution’s impact on health and environmental outcomes, particularly in parts of the world
where data are lacking and quasi-experimental settings are difficult to find.

Our findings suggest that even minimal exposure to PM2.5 and lead from airplane emis-
sions can have significant health impacts, evidenced by lower birth weights and reduced
fertility rates. Combined with the growing body of evidence on the high cost of air pol-
lution, this paper underscores the need for policies to mitigate aviation-related pollution.
This is particularly germane to the EPA’s recent effort to address leaded emissions in avi-
ation (link). Moreover, our findings contribute to the broader discussion on global fertility
trends and the role of environmental factors in shaping population dynamics. Utilizing our
airline instrument, we hope that further research will provide additional insights into the
complex interplay between pollution, health, and demographics.
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Figures and Tables

Figure 1: Visualization of airline routes

A: All flight routes

B: Propeller plane routes (leaded fuel)

Notes: The top panel shows trajectories of 66,512 unique airline routes. The bottom panel shows trajecto-
ries of 7,899 leaded routes, mainly domestic airlines with shorter distances.
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Figure 2: Binscatter plot of overhead flight intensity and PM2.5 levels
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Notes: This figure shows average PM2.5 in each airline intensity bin. Global analysis (left) includes coun-
try FEs. Grid cells located with 100km of airports are dropped from analysis.

Figure 3: Event study, defined by simulated airline intensity
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Notes: Panel A plots residuals of airline intensity. Panel B plots residuals of PM2.5 from van Donkelaar
et al. (2021). Both panels include year and grid fixed effects.
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Figure 4: Impacts of leaded airline intensity on fertility
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Notes: This figure plots point estimates on α1 in Equation 4 in the US and each individual country in the
DHS sample. Gray areas are not covered by the DHS.
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Table 1: Data summary

Area Time Frequency
Treatment
OAG airline route list (flight count per year) Global 1997-2023 Yearly
OpenSky aircraft location (count per 0.1◦ grid) Global 2016-2019 Weekly

Air pollution
EPA monitor PM2.5 (µg/m3) US 1998-2023 Daily
van Donkelaar et al. (2021) PM2.5 (µg/m3) Global 1998-2021 Monthly
MERRA-2 aerosol optical depth (AOD) Global 1997-2023 Monthly

Lead pollution
EPA monitor lead (µg/m3) US 1997-2023 Daily
Soil lead (mg/kg) US 2007-2010 Cross-sectional

Downstream outcomes
Fertility in DHS countries (birth dummy) 44 countries 1992-2021 Microdata
Birth weight in DHS countries (grams) 44 countries 1992-2021 Microdata
Fertility in the US (birth rate per county) US 1968-2023 Microdata
Blood lead (detect rate ‰) Massachusetts 2012-2019 Yearly
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Table 2: Airline intensity and air pollution

PM2.5 (µg/m3)
US Global

(1) (2) (3) (4)

All routes 1.94∗∗ 1.35∗∗∗ 3.90∗∗ 2.27∗∗∗

(0.83) (0.52) (1.56) (0.78)

Observations 3,541,822 3,541,822 28,411,131 28,411,131
R-square 0.151 0.187 0.713 0.834
Y-mean 10.04 10.04 19.38 19.38
Y-sd 7.38 7.38 17.07 17.07

Year, Month Y Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Adm1 FEs Y
Trend Quadratic Quadratic Country-specific Country-specific

Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar et al. (2021)
product (Global). Sample in Column (1) and (2) is at the monitor-day level, 1998-2019; Sample
in Column (3) and (4) is at the grid-month level, 1998-2019. X-unit is aviation intensity ranging
between 0 and 1. Standard errors are clustered at the state level in Column (1) and (2) and at
the country level in Column (3) and (4). Significance: * 0.10, ** 0.05, *** 0.01.
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Table 3: Airline intensity, air pollution, and birth outcomes

Panel A: Reduced form
Low birth weight Very low birth weight

(1) (2)

All routes 0.018∗∗ 0.005∗

(0.007) (0.003)

Observations 194,712 194,712
R-square 0.065 0.019
Y-mean 0.022 0.004
Y-sd 0.147 0.059

Panel B: IV regression

PM2.5 0.010∗∗ 0.004∗∗

(0.004) (0.002)

Observations 188,178 188,178
R-square -0.255 -0.220
F-stat 11.81 11.81
Y-mean 0.023 0.004
Y-sd 0.149 0.060
X-mean 44.19 44.19
X-sd 23.89 23.89

Adm1 FEs Y Y
Country-specific trend Quadratic Quadratic
Notes: Each observation is a birth record in the DHS data. Low birth weight is
a dummy that equals one if the raw birth weight is below 2500 grams and zero
otherwise. Very low birth weight equals one if the birth weight is below 1500
grams. Sample covers year 1998-2019. PM2.5 levels are average pollution dur-
ing in-utero periods, using data from the gridded van Donkelaar et al. (2021)
product. Regression is weighted by survey sample weight, i.e., v005. Standard
errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table 4: Event study, new airlines and air pollution

Panel A: Defined by simulated airline intensity
Aviation intensity PM2.5
(1) (2) (3)

Post 0.191∗∗∗ 0.208∗∗∗ 0.380∗∗∗

(0.000) (0.000) (0.006)

Observations 4,437,387 1,816,233 1,816,233
R-square 0.598 0.587 0.973
Y-mean 0.155 0.166 19.232
Y-sd 0.181 0.193 17.501

Panel B: Defined by airline list

Post 0.019∗∗ 0.015∗∗ 0.391∗∗

(0.007) (0.007) (0.161)

Observations 5,733,918 3,378,727 3,306,453
R-square 0.888 0.876 0.679
Y-mean 0.547 0.615 20.860
Y-sd 0.356 0.342 17.113

Year FEs Y Y Y
Grid FEs Y Y Y
Notes: The analysis is at the grid-year level from 3 years before to 5 years
after each grid’s event year when new airline routes opened. The sample cov-
ers year 1998-2019. The outcome variable in Columns (1) and (2) is airline
intensity, ranging between 0 and 1. The outcome variable in Column (3) is
PM2.5 level from the gridded van Donkelaar et al. (2021) product. Column
(1) includes all grid-years. Column (2) includes grid-years with non-missing
PM2.5 data in the land area and no ocean area, the same sample as Column
(3). Standard errors are clustered at the grid level. Significance: * 0.10, **
0.05, *** 0.01.
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Table 5: Aviation and air lead

Lead (µg/m3)
(1) (2) (3)

Leaded routes 0.018∗∗∗ 0.015∗∗∗

(0.007) (0.005)
All routes 0.036

(0.038)
Unleaded routes 0.032

(0.031)

Observations 318,856 318,856 318,856
R-square 0.093 0.093 0.093
Y-mean 0.152 0.152 0.152
Y-sd 0.731 0.731 0.731

Year FEs Y Y Y
Month FEs Y Y Y
DOW FEs Y Y Y
State FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: The analysis is at the monitor-day level. Outcome variables
are air lead levels from the EPA monitors, unit µg/m3. The sample
covers the years 1998-2019. Treatment variables are aviation inten-
sity, ranging between 0 and 1. Standard errors are clustered at the
state-year level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table 6: Aviation lead and fertility in DHS countries

Birth dummy
(1) (2) (3)

Leaded routes -0.071∗∗∗ -0.068∗∗∗

(0.009) (0.008)
All routes -0.003

(0.009)
Unleaded routes -0.013

(0.009)

Observations 7,096,998 7,096,998 7,096,998
R-square 0.013 0.013 0.012
Y-mean 0.274 0.274 0.274
Y-sd 0.446 0.446 0.446

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers the
years 1998-2019. The regression is weighted by survey sample weight, i.e., v005.
Treatment variables are aviation intensity, ranging between 0 and 1. Standard
errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table 7: Fertility impacts of leaded gasoline bans

Birth dummy
Panel A: Single difference

(1) (2) (3) (4)

Post 0.072∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.006) (0.009) (0.009) (0.006)

Observations 7,859,861 7,248,099 7,248,099 7,248,099
R-square 0.069 0.015 0.021 0.021
Y-mean 0.296 0.274 0.274 0.274
Y-sd 0.457 0.446 0.446 0.446

Panel B: Double difference

Post 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.009) (0.005) (0.006)
Road -0.021∗∗ -0.018∗∗∗ -0.018∗∗∗

(0.009) (0.006) (0.006)
Post × Road 0.023 0.023∗∗ 0.023∗

(0.015) (0.011) (0.012)

Observations 7,248,099 7,248,099 7,248,099
R-square 0.015 0.021 0.021
Y-mean 0.274 0.274 0.274
Y-sd 0.446 0.446 0.446

Country FEs Y Y
Adm1 FEs Y Y
Age, Age2 Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29, we
code her birth decision from three years before to five years after the leaded fuel ban in each
country. The outcome variable is a dummy that equals one if this female respondent gives
birth in a given year and zero otherwise. The sample covers the years 1992-2021. Regression
is weighted by survey sample weight, i.e., v005. Column (1) includes both geocoded and non-
geocoded respondents, and Column (2)-(4) only includes geocoded respondents. Standard
errors are clustered at the country level in Column (1)-(3) and at the adm1 level in Column
(4). Significance: * 0.10, ** 0.05, *** 0.01.
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Online Appendix

A1 Additional Figures

Figure A1: Illustration of research design using JFK to LAX flight path over Kansas

Notes: Empirical approach assumes that characteristics do not systematically differ between higher and
lower flight intensity areas, as illustrated by the black and orange bands, respectively. Map produced using
https://www.distance.to/LAX/JFK.
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Figure A2: Locations of EPA PM2.5 (top) and air lead monitors (bottom)

Notes: Locations of 2,344 PM2.5 monitors and 2,467 air lead monitors are shown in red dots. Each moni-
tor has at least one report 1997-2023.
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Figure A3: Buffers around airports

Notes: Locations near 7,698 airports within 100km are shown in red dots. These airports hosted at least
one airline in 1997-2023.

Figure A4: Locations of DHS clusters and road segments

Notes: Locations of DHS clusters are shown in block dots. There are 142,842 clusters in 44 countries. Lo-
cations of road segments are from the Global Roads Open Access Dataset (gRoads) from the Socioeco-
nomic Data and Applications Center, Columbia University, and plotted in blue lines.
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Figure A5: Airline count and frequency over time
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Notes: We count non-duplicated airlines in blue and aggregate airline frequency in red. The top figure
displays level changes over the period 1997-2023. The bottom figure specifically enumerates new airlines
that were not in operation the previous year.
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Figure A6: Treated grids with new airlines
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Notes: Panel A: Treated grids in 2000, defined by simulated airline intensity; Panel B: Treated grids in
2014, defined by simulated airline intensity; Panel C: Treated grids in 2000, defined by airline list; Panel
D: Treated grids in 2014, defined by airline list.

Figure A7: Distribution of airline intensity
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Notes: Airline intensity is a value from 0 to 1. The left figure is histogram of airline intensity using all
grids. The right figure drops grids with 0 or 1 airline intensity.
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Figure A8: Effects by distance cutoffs
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Notes: This figure shows estimated effect size of β̂ in Equation 1 using different samples. We use distance
cutoff to define remote areas far from airports: 0km means all pixels are kept, same as Table 2; 100km
means only pixels far from airports by 100km or farther are kept, same as Table A1. Each green dot is one
regression point estimate, and each gray bar is one confidence interval.
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Figure A9: Event study, defined by airline list
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Notes: Panel A plots residuals of airline intensity. Panel B plots residuals of PM2.5 from van Donkelaar
et al. (2021). Both panels include year and grid fixed effects.
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Figure A10: Event study, dropping grids near airports
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Notes: We drop pixels within 100km of any airports before estimating the residuals. Panel A plots resid-
uals of airline intensity. Panel B plots residuals of PM2.5 from van Donkelaar et al. (2021). Both panels
include year and grid fixed effects.
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Figure A11: Event study, using alternative event window
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Notes: Panel A plots residuals of airline intensity. Panel B plots residuals of PM2.5 from van Donkelaar
et al. (2021). Both panels include year and grid fixed effects.
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Figure A12: Fuel use for ten sample airlines

Notes: The left figure shows estimated fuel burn for 10 flights departing from London Heathrow Airport
(LHR) to Paris Charles de Gaulle Airport (CDG), Hong Kong (HKG), Athens (ATH), Dubai (DXB), Ed-
inburgh (EDI), Geneva (GVA), Helsinki (HEL), Lisbon (LIS), Madrid (MAD) and New York (JFK). Unit:
ton; The right figure displays fuel burn per kilometer. Unit: ton/km. Source: OAG.

Figure A13: Propeller airline count and frequency over time
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Notes: We count non-duplicated airlines that are operated by propeller planes in blue and aggregate air-
line frequency in red. The figure displays level changes over the period 1997-2023.
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A2 Additional Tables

A2.1 Airline routes as pollution instrument

Table A1: Airline intensity and air pollution, dropping pixels close to airports, 100km as
cutoff distance

PM2.5 (µg/m3)
US Global

(1) (2) (3)

All routes 2.035∗∗∗ 1.460∗∗ 3.094∗∗∗

(0.460) (0.705) (1.159)

Observations 2,179,304 2,179,304 10,459,281
R-square 0.152 0.179 0.719
Y-mean 10.058 10.058 18.688
Y-sd 7.096 7.096 18.114

Year, Month Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar
et al. (2021) product (Global). Sample in Column (1) and (2) is at the monitor-
day level, 1998-2019; Sample in Column (3) is at the grid-month level, 1998-2019.
X-unit is aviation intensity ranging between 0 and 1. Standard errors are clus-
tered at the state level in Column (1) and (2) and at the country level in Column
(3). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A2: Airline intensity and air pollution, alternative specifications

Panel A: Using discrete intensity
PM2.5 (µg/m3)

US Global

All routes 0.595∗∗∗ 0.287∗∗∗ 1.199∗

(0.124) (0.104) (0.664)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.150 0.187 0.710

Panel B: Dropping small intensity

All routes 1.012∗∗∗ 0.446∗∗∗ 3.659∗∗

(0.278) (0.149) (1.479)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.152 0.187 0.713

Panel C: Duplicated airlines based on frequency

All routes 1.553∗∗ 0.824∗∗∗ 3.649∗∗

(0.637) (0.292) (1.471)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.151 0.187 0.713
Y-mean 10.036 10.036 19.381
Y-sd 7.375 7.375 17.068

Year, Month Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar
et al. (2021) product (Global). Sample in Column (1) and (2) is at the monitor-
day level, 1998-2019; Sample in Column (3) is at the grid-month level, 1998-2019.
In Panel A, we use a dummy to code AllRoutes by replacing all positive values
with 1. In Panel B and C, X-unit is aviation intensity ranging between 0 and 1.
Standard errors are clustered at the state level in Column (1) and (2) and at the
country level in Column (3). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A3: Airline intensity and air pollution, alternative clustering

Panel A: Clustering at smaller geographic units
PM2.5 (µg/m3)

US Global

All routes 1.935∗∗∗ 1.349∗∗ 3.901∗∗∗

(0.564) (0.558) (0.024)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.151 0.187 0.713
Y-mean 10.036 10.036 19.381
Y-sd 7.375 7.375 17.068

Panel B: Clustering at the year level

All routes 1.935∗∗∗ 1.349∗∗∗ 3.901∗∗∗

(0.198) (0.235) (0.261)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.151 0.187 0.713

Panel C: Two way clustering

All routes 1.935∗∗ 1.349∗∗ 3.901∗∗

(0.835) (0.570) (1.573)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.151 0.187 0.713

Year, Month Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar
et al. (2021) product (Global). Sample in Column (1) and (2) is at the monitor-
day level, 1998-2019; Sample in Column (3) is at the grid-month level, 1998-2019.
X-unit is aviation intensity ranging between 0 and 1. In Column (1) and (2), stan-
dard errors are clustered at the county level in Panel A, year level in Panel B, and
state and year level in Panel C. In Column (3), standard errors are clustered at
the grid level in Panel A, year level in Panel B, and grid and year level in Panel C.
Significance: * 0.10, ** 0.05, *** 0.01. S14



Table A4: Airline intensity and air pollution, using OpenSky data

PM2.5 (µg/m3)
US Global

(1) (2) (3)

All aircrafts 0.531∗∗∗ 0.443∗∗ 2.554∗∗∗

(0.186) (0.183) (0.068)

Observations 673,436 673,436 352,873
R-square 0.086 0.125 0.166
Y-mean 8.102 8.102 5.991
Y-sd 6.275 6.275 1.713

Year, Month Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar
et al. (2021) product (Global). Sample in Column (1) and (2) is at the monitor-
week level, 2016-2019; Sample in Column (3) is at the grid-week level, 2016-2019.
X-unit is the number of overhead aircraft (count over each grid-week) divided by
1,000,000. Standard errors are clustered at the state level in Column (1) and (2)
and at the country level in Column (3). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A5: Flight ban during September 2001

PM2.5 (µg/m3)
(1) (2)

All routes 4.067∗∗∗ 4.068∗∗∗

(0.644) (0.644)
Event -0.850∗∗

(0.330)
Event × All routes -5.508∗∗∗

(1.749)

Observations 1,276,884 1,276,884
R-square 0.119 0.119
Y-mean 12.244 12.244
Y-sd 8.213 8.213

DOW FEs Y Y
Month FEs Y Y
Notes: PM2.5 levels are from EPA monitors. Sample is
at the grid-day level in 2001. AllRoutes is airline inten-
sity ranging between 0 and 1. Event is a time dummy
that equals one if this day is between September 11 to 13,
2001, and zero otherwise, and is the same for all grids.
Standard errors are clustered at the grid level. Signifi-
cance: * 0.10, ** 0.05, *** 0.01.
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Table A6: Event study, new airlines and air pollution, dropping areas close to airports

Panel A: Defined by simulated airline intensity
Aviation intensity PM2.5

Post 0.185∗∗∗ 0.205∗∗∗ 0.280∗∗∗

(0.000) (0.000) (0.008)

Observations 3,168,711 869,043 869,043
R-square 0.605 0.593 0.976
Y-mean 0.151 0.165 18.544
Y-sd 0.176 0.190 18.832

Panel B: Defined by airline list

Post 0.025∗∗∗ 0.022∗∗ 0.376∗∗

(0.009) (0.009) (0.156)

Observations 2,519,253 809,487 801,658
R-square 0.852 0.815 0.656
Y-mean 0.393 0.436 18.767
Y-sd 0.321 0.310 16.654

Year FEs Y Y Y
Grid FEs Y Y Y
Notes: The analysis is at the grid-year level from 3 years before to 5 years
after each grid’s event year when new airline routes opened. The sample cov-
ers year 1998-2019. The outcome variable in Columns (1) and (2) is airline
intensity, ranging between 0 and 1. The outcome variable in Column (3) is
PM2.5 level from the gridded van Donkelaar et al. (2021) product. Column
(1) includes all grid-years not close to airports. Column (2) includes grid-
years with non-missing PM2.5 data in the land area and no ocean area and
not close to airports, the same sample as Column (3). Standard errors are
clustered at the grid level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A7: Event study, using alternative event window

Aviation intensity PM2.5

Post 0.202∗∗∗ 0.222∗∗∗ 0.382∗∗∗

(0.000) (0.000) (0.007)

Observations 3,925,075 1,556,686 1,556,686
R-square 0.607 0.598 0.972
Y-mean 0.149 0.163 19.363
Y-sd 0.181 0.196 17.828

Year FEs Y Y Y
Grid FEs Y Y Y
Notes: The analysis is at the grid-year level from 4 years before
to 6 years after each grid’s event year when new airline routes
opened. The sample covers year 1998-2019. The outcome vari-
able in Columns (1) and (2) is airline intensity, ranging between
0 and 1. The outcome variable in Column (3) is PM2.5 level
from the gridded van Donkelaar et al. (2021) product. Column
(1) includes all grid-years. Column (2) includes grid-years with
non-missing PM2.5 data in the land area and no ocean area,
the same sample as Column (3). Standard errors are clustered
at the grid level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A8: Results using MERRA-2 data

MERRA-2 AOD
Panel A: Panel model

All routes 0.046∗

(0.025)
Observations 28,411,131
R-square 0.668
Y-mean 0.185
Y-sd 0.112
Year, Month Y
Country FEs Y
Trend Country-specific quadratic

Panel B: Event study

Post 0.002∗∗∗

(0.000)

Observations 1,282,536
R-square 0.940
Y-mean 0.184
Y-sd 0.111
Year FEs Y
Grid FEs Y
Notes: The analysis is at the grid-year level. In
Panel A, the sample covers 1997-2019. In Panel B,
the sample covers 3 years before to 5 years after each
grid’s event year when new airline routes opened.
The outcome variable is aerosol optical depth level
from the MERRA-2 product. In Panel A, X-unit is
aviation intensity ranging between 0 and 1. Standard
errors are clustered at the country level. In Panel B,
standard errors are clustered at the grid level. Signif-
icance: * 0.10, ** 0.05, *** 0.01.
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Table A9: Heterogeneity across baseline pollution and GDP

PM2.5 (µg/m3)
Panel A: Baseline PM2.5

Lowest quartile 2nd 3rd Highest quartile

All routes 0.717∗∗∗ 1.393∗∗∗ 0.421 0.573
(0.136) (0.462) (0.386) (1.671)

Observations 7,103,061 7,103,649 7,102,410 7,102,011
R-square 0.257 0.227 0.294 0.317
Y-mean 4.406 10.134 19.666 43.321
Y-sd 1.913 3.140 4.941 15.637

Panel B: GDP
Lowest quartile 2nd 3rd Highest quartile

All routes 6.591∗∗∗ 2.224 3.484∗∗∗ 2.107∗∗∗

(2.287) (3.601) (0.969) (0.649)

Observations 7,200,081 7,162,890 7,094,430 6,920,235
R-square 0.446 0.522 0.752 0.878
Y-mean 32.799 23.628 11.098 9.573
Y-sd 18.905 12.371 9.328 14.247
Year, Month Y Y Y Y
Country FEs Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: PM2.5 levels are the gridded van Donkelaar et al. (2021) product. Sample is at the grid-month level,
1998-2019. X-unit is aviation intensity ranging between 0 and 1. Standard errors are clustered at the country
level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A10: Dropping pixels with high turbulence or adding turbulence as control

PM2.5 (µg/m3)

All routes 3.641∗∗ 3.753∗∗

(1.507) (1.463)
Turbulence -3.520

(2.171)

Observations 23,774,441 28,411,131
R-square 0.727 0.716
Y-mean 20.850 19.381
Y-sd 17.803 17.068

Year, Month Y Y
Country FEs Y Y
Country-specific trend Quadratic Quadratic
Notes: PM2.5 levels are the gridded van Donkelaar et al.
(2021) product. Sample is at the grid-month level, 1998-
2019. X-unit is aviation intensity ranging between 0 and
1. Column (2) include all grid-months. Column (1) drop
the top 10% pixel-months with the highest turbulence
levels in the sample. Standard errors are clustered at the
country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A11: IV regression using MERRA AOD

Low birth weight Very low birth weight

MERRA-2 AOD 1.328167∗∗∗ 0.630982∗∗∗

(0.511187) (0.243989)

Observations 182,414 182,414
R-square -0.057 -0.098
F-stat 17.440 17.440
X-mean 0.185 0.185
X-sd 0.112 0.112
Y-mean 0.023 0.004
Y-sd 0.149 0.061

Adm1 FEs Y Y
Country-specific trend Quadratic Quadratic
Notes: Each observation is a birth record in the DHS data. Low birth weight is a
dummy that equals one if the raw birth weight is below 2500 grams and zero oth-
erwise. Very low birth weight equals one if the birth weight is below 1500 grams.
Sample covers year 1998-2019. Air pollution levels are average pollution during
in-utero periods, using data from the MERRA-2 aerosol optical depth product.
Regression is weighted by survey sample weight, i.e., v005. Standard errors are
clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A12: PM2.5 from more and less noisy airline routes

Panel A: EPA PM2.5

More noisy routes 1.342∗∗ 0.813∗

(0.513) (0.430)
Less noisy routes 1.544∗∗∗ 0.978∗∗∗

(0.518) (0.357)

Observations 3,541,822 3,541,822 3,541,822
R-square 0.151 0.151 0.152

Panel B: van Donkelaar et al. (2021)

More noisy routes 3.442∗∗ 1.216∗∗

(1.347) (0.601)
Less noisy routes 4.503∗∗ 3.827∗∗

(1.936) (1.875)

Observations 28,411,131 28,411,131 28,411,131
R-square 0.711 0.713 0.713
Notes: PM2.5 levels are from EPA monitors in Panel A and the gridded
van Donkelaar et al. (2021) product in Panel B. Sample in Panel A is at
the monitor-day level, 1998-2019; Sample in Panel B is at the grid-month
level, 1998-2019. In Panel A, controls include year, month, day-of-week,
and state fixed effects. Standard errors are clustered at the state level. In
Panel B, controls include year, month, and country fixed effects. X-unit is
aviation intensity ranging between 0 and 1. Standard errors are clustered
at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A13: Low birth weight from more and less noisy airline routes

Low birth weight

More noisy routes 0.0203∗∗ 0.0080
(0.0077) (0.0059)

Less noisy routes 0.0247∗∗∗ 0.0194∗∗∗

(0.0074) (0.0059)

Observations 186,861 186,861 186,861
R-square 0.065 0.065 0.065 0.065
Y-mean 0.023 0.023 0.023
Y-sd 0.150 0.150 0.150
Notes: Each observation is a birth record in the DHS data. Low birth
weight is a dummy that equals one if the raw birth weight is below
2500 grams and zero otherwise. Sample covers year 1998-2019. Air-
line intensity is average intensity during in-utero periods. Regression is
weighted by survey sample weight, i.e., v005. Standard errors are clus-
tered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A14: Effects of any, leaded, and unleaded airline intensity on PM2.5

PM2.5 (µg/m3)

All routes 3.901∗∗

(1.562)
Leaded routes 2.990∗∗ 1.356∗∗

(1.169) (0.648)
Unleaded routes 3.959∗∗ 3.851∗∗

(1.552) (1.532)

Observations 28,411,131 28,411,131 28,411,131 28,411,131
R-square 0.713 0.710 0.713 0.714
Y-mean 19.381 19.381 19.381 19.381
Y-sd 17.068 17.068 17.068 17.068

Year, Month Y Y Y Y
Country FEs Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from the gridded van Donkelaar et al. (2021) product. Sample is at
the grid-month level, 1998-2019. X-unit is aviation intensity or leaded and unleaded intensity
ranging between 0 and 1. Standard errors are clustered at the country level. Significance: *
0.10, ** 0.05, *** 0.01.
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Table A15: Heterogeneity across aircraft altitudes

Panel A: van Donkelaar et al. (2021) data
PM2.5 (µg/m3)

All aircrafts 10.223∗∗∗

(0.678)
Low aircrafts 9.342∗∗∗

(0.514)
High aircrafts 15.087∗∗∗

(1.824)

Observations 357,036 357,036 357,036
R-square 0.188 0.182 0.179
Y-mean 5.986 5.986 5.986
Y-sd 1.715 1.715 1.715
Year, Month Y Y Y
Country FEs Y Y Y
Country-specific trend Quadratic Quadratic Quadratic

Panel B: EPA monitor data
PM2.5 (µg/m3)

All aircrafts 0.539∗∗∗

(0.181)
Low aircrafts 2.465∗∗∗

(0.363)
High aircrafts 0.272∗∗

(0.127)

Observations 876,607 876,607 876,607
R-square 0.082 0.084 0.082
Y-mean 7.965 7.965 7.965
Y-sd 6.053 6.053 6.053
Year, Month Y Y Y
State FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors in Panel B and the gridded van
Donkelaar et al. (2021) product in Panel A. Sample in Panel B is at the monitor-
day level, 2016-2019; Sample in Panel A is at the grid-month level, 2016-2019.
X-unit is the number of overhead aircraft (count over each grid-week) divided by
1,000,000. Standard errors are clustered at the country level in Panel A and at
the state level in Panel B. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A16: Add average altitude as control

PM2.5 (µg/m3)
van Donkelaar et al. (2021) EPA monitor

All aircrafts 10.8401∗∗∗ 0.5530∗∗∗

(0.3028) (0.1287)
Altitude -0.0002∗∗ -0.0004∗∗∗

(0.0001) (0.0001)

Observations 357,574 876,607
R-square 0.179 0.083
Y-mean 5.985 7.965
Y-sd 1.715 6.053
Year, Month Y Y
Country FEs Y
State FEs Y
Country-specific trend Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors in Column (2) and the gridded van Donke-
laar et al. (2021) product in Column (1). Sample in Column (2) is at the monitor-day
level, 2016-2019; Sample in Column (1) is at the grid-month level, 2016-2019. X-unit is the
number of overhead aircraft (count over each grid-week) divided by 1,000,000. Standard
errors are clustered at the country level in Column (1) and at the state level in Column
(2). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A17: Control for road intensity

PM2.5 (µg/m3)
US Global

All routes 1.371∗ 1.137∗∗ 3.837∗∗

(0.802) (0.502) (1.498)
Road 5.996∗∗∗ 8.070∗∗∗ 0.529

(0.894) (1.324) (1.188)

Observations 3,541,822 3,541,822 28,411,131
R-square 0.156 0.188 0.713
Y-mean 10.036 10.036 19.381
Y-sd 7.375 7.375 17.068

Year, Month Y Y Y
DOW FEs Y Y
State FEs Y
County FEs Y
Country FEs Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: PM2.5 levels are from EPA monitors (US) and the gridded van Donkelaar
et al. (2021) product (Global). Sample in Column (1) and (2) is at the monitor-
day level, 1998-2019; Sample in Column (3) is at the grid-month level, 1998-2019.
X-unit is aviation intensity ranging between 0 and 1. Standard errors are clustered
at the state level in Column (1) and (2) and at the country level in Column (3).
Significance: * 0.10, ** 0.05, *** 0.01.
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Table A18: Balance table, high vs. low airline intensity

Panel A: All clusters
Geo-clusters with airline routes Difference

All routes All routes
below median above median

(1) (2) (3)

Wealth index 2.724 2.996 0.272∗∗

[0.946] [1.032] (0.085)
Education in years 1.673 1.892 -0.218

[2.093] [2.878] (0.193)
BMI 22.28 22.35 -0.059

[2.375] [2.169] (0.199)
Had vaccination 0.736 0.707 0.029

[0.272] [0.321] (0.016)
#Respondents 35,715 34,698

Panel B: Remote clusters 100km away from airports
Geo-clusters with airline routes Difference

All routes All routes
below median above median

Wealth index 2.857 3.017 0.159
[0.969] [1.023] (0.105)

Education in years 1.591 1.251 0.341
[1.974] [2.423] (0.213)

BMI 22.31 22.41 -0.099
[2.372] [2.204] (0.246)

Had vaccination 0.745 0.727 0.018
[0.271] [0.317] (0.014)

#Respondents 19,776 14,330
Notes: The median for AllRoutes, LeadedRoutes, and UnleadedRoutes are 0.364,
0.0468, and 0.350, respectively. Standard deviations are reported in brackets. Standard
errors of the differences are reported in parentheses.
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Table A19: Balance table for US census tracts, high vs. low airline intensity

Panel A: All census tracts
All routes All routes Difference

below median above median
(1) (2) (3)

Income 84087.5 71365.6 12721.9∗∗∗

[41222.6] [32990.1] (304.5)
Working hours per week 38.60 38.24 0.355

[20.53] [20.88] (0.169)
High school degree proportion 56.87 57.57 -0.700

[54.71] [54.63] (0.445)
Female proportion 50.38 50.59 -0.211

[17.61] [18.64] (0.147)
Disability proportion 20.76 20.68 0.080

[9.801] [9.103] (0.077)
#Census tracts 55,862 55,862

Panel B: Remote census tracts
100km away from airports

All routes All routes Difference
below median above median

Income 77930.1 77874.6 55.48
[38236.9] [37894.6] (312.7)

Working hours per week 38.59 38.57 -0.023
[2.515] [2.508] (0.020)

High school degree proportion 58.61 58.51 0.099
[160.6] [165.7] (1.339)

Female proportion 50.93 50.94 -0.010
[3.768] [3.638] (0.031)

Disability proportion 20.08 20.13 -0.041
[7.061] [7.150] (0.062)

#Census tracts 36,368 36,367
Notes: Standard deviations are reported in brackets. Standard errors of the differences
are reported in parentheses.
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A2.2 Lead and fertility

Table A20: Airline impacts on soil lead

Soil lead (wt%)
(1) (2)

Leaded routes 473.867∗ 206.999
(279.933) (226.429)

All routes 42.536∗∗∗

(13.105)

Observations 14,290 14,290
R-square 0.040 0.066
Y-mean 18.441 18.441
Y-sd 10.107 10.107
Leaded routes-mean 0.0007 0.0007
Leaded routes-sd 0.0018 0.0018
All routes-mean 0.039 0.039
All routes-sd 0.041 0.041
State FEs Y Y
Depth FEs Y Y
Notes: X-unit is the number of airline route times 1000.
The unit of soil lead is weighted percent. Depth FEs
indicate three soil groups. Standard errors are clustered
at the state level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A21: Aviation lead and fertility in the US

Birth rate
(1) (2) (3)

Leaded routes -2.160∗∗∗ -2.204∗∗∗

(0.798) (0.991)
All routes -0.149

(2.420)
Unleaded routes 0.329

(1.299)

Observations 226,440 226,440 226,440
R-square 0.326 0.326 0.325
Y-mean 69.156 69.156 69.156
Y-sd 15.891 15.891 15.891

County FEs Y Y Y
Year FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: Outcome variable birth rate is at the county-year level, cal-
culated as the number of newborns divided by the female population
aged 15-49. The sample covers 1998-2019. Standard errors are clus-
tered at the state level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A22: Correlation between leaded and unleaded airline intensity

Panel A: All pixels
Leaded routes

Unleaded routes 0.107∗∗∗ 0.112∗∗∗ 0.021∗∗∗

(0.000) (0.000) (0.000)

Observations 28,411,131 28,411,131 28,411,131
R-square 0.079 0.084 0.639
Y-mean 0.047 0.047 0.047
Y-sd 0.134 0.134 0.134
Year, Month Y Y
Grid FEs Y

Panel B: EPA air lead
monitors’ surrounding pixels

Unleaded routes 0.425∗∗∗ 0.450∗∗∗ 0.294∗∗∗

(0.004) (0.004) (0.004)

Observations 462,283 462,283 462,283
R-square 0.029 0.100 0.248
Y-mean 0.323 0.323 0.323
Y-sd 0.374 0.374 0.374
Year, Month Y Y
State FEs Y
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Table A23: IV regression, in-utero lead and fertility in the US

Birth rate
OLS IV IV
(1) (2) (3)

Air lead -0.002 -0.167∗∗ -0.130∗∗

(0.001) (0.073) (0.052)

Observations 9,473 9,473 9,473
R-square 0.98 -1.61 -0.97
F-stat 23.04 12.92
Y-mean 83.95 83.95 83.95
Y-sd 159.89 159.89 159.89

County FEs Y Y Y
Year FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: Outcome variable birth rate is at the county-year level, cal-
culated as the number of newborns divided by the female population
aged 15-49. The sample covers 1998-2019. Endogenous regressor,
air lead, is from the EPA monitor, and unit is mug/m3. Column (2)
uses propeller airline intensity as IV, and Column (3) uses two in-
struments, propeller airline intensity and all airline intensity as IV.
Standard errors are clustered at the state level. Significance: * 0.10,
** 0.05, *** 0.01.
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Table A24: Airline impacts on fertility, heterogeneity across ages

Birth dummy
15-19 20-35 36-49

12.4% of the sample 79.5% 8.1%
(1) (2) (3)

Leaded routes -0.061∗∗∗ -0.074∗∗∗ -0.058∗∗∗

(0.012) (0.010) (0.008)

Observations 873,934 5,639,178 583,886
R-square 0.008 0.014 0.014
Y-mean 0.257 0.281 0.231
Y-sd 0.437 0.450 0.422

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29,
we code her birth decision from the survey year to five years before. The outcome variable is
a dummy that equals one if this female respondent gives birth in a given year and zero oth-
erwise. The sample covers the years 1998-2019. The regression is weighted by survey sample
weight, i.e., v005. Treatment variables are aviation intensity, ranging between 0 and 1. Stan-
dard errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A25: Airline impacts on fertility, heterogeneity across nutrition levels

Birth dummy
1st quartile 2nd 3rd 4th

(1) (2) (3) (4)

Leaded routes -0.066∗∗∗ -0.068∗∗∗ -0.069∗∗∗ -0.071∗∗∗

(0.007) (0.004) (0.007) (0.009)

Observations 959,510 889,936 982,244 954,576
R-square 0.008 0.008 0.009 0.013
Y-mean 0.274 0.274 0.268 0.263
Y-sd 0.446 0.446 0.443 0.440

Country FEs Y Y Y Y
Age, Age2 Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29,
we code her birth decision from the survey year to five years before. The outcome variable
is a dummy that equals one if this female respondent gives birth in a given year and zero
otherwise. The sample covers the years 1998-2019. The regression is not weighted. Treatment
variables are aviation intensity, ranging between 0 and 1. Standard errors are clustered at the
country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A26: Airline impacts on fertility, unweighted results

Birth dummy
(1) (2) (3)

Leaded routes -0.065∗∗∗ -0.069∗∗∗

(0.012) (0.008)
All routes 0.004

(0.010)
Unleaded routes -0.003

(0.010)

Observations 7,104,615 7,104,615 7,104,615
R-square 0.012 0.012 0.012
Y-mean 0.277 0.277 0.277
Y-sd 0.448 0.448 0.448

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers the
years 1998-2019. The regression is weighted by survey sample weight, i.e., v005.
Treatment variables are aviation intensity, ranging between 0 and 1. Standard
errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A27: Airline impacts on fertility, drop age controls

Birth dummy
(1) (2) (3)

Leaded routes -0.070∗∗∗ -0.067∗∗∗

(0.009) (0.008)
All routes -0.002

(0.008)
Unleaded routes -0.012

(0.009)

Observations 7,096,998 7,096,998 7,096,998
R-square 0.012 0.012 0.012
Y-mean 0.274 0.274 0.274
Y-sd 0.446 0.446 0.446

Country FEs Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers the
years 1998-2019. The regression is weighted by survey sample weight, i.e., v005.
Treatment variables are aviation intensity, ranging between 0 and 1. Standard
errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.

S38



Table A28: Airline and air lead, dropping areas close to airports

Lead (µg/m3)
(1) (2) (3)

Leaded routes 0.014∗ 0.014∗∗

(0.007) (0.006)
All routes 0.003

(0.040)
Unleaded routes 0.016

(0.033)

Observations 218,893 218,893 218,893
R-square 0.086 0.086 0.086
Y-mean 0.189 0.189 0.189
Y-sd 0.856 0.856 0.856

Year FEs Y Y Y
Month FEs Y Y Y
DOW FEs Y Y Y
State FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: The analysis is at the monitor-day level. Outcome variables are
air lead levels from the EPA monitors, unit µg/m3. The sample covers
the years 1998-2019. Treatment variables are aviation intensity, ranging
between 0 and 1. Standard errors are clustered at the state-year level.
Significance: * 0.10, ** 0.05, *** 0.01.
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Table A29: Airline lead and fertility in DHS countries, dropping areas close to airports

Birth dummy
(1) (2) (3)

Leaded routes -0.071∗∗∗ -0.066∗∗∗

(0.009) (0.007)
All routes -0.005

(0.008)
Unleaded routes -0.015∗

(0.008)

Observations 6,081,236 6,081,236 6,081,236
R-square 0.014 0.014 0.013
Y-mean 0.276 0.276 0.276
Y-sd 0.447 0.447 0.447

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers the
years 1998-2019. The regression is weighted by survey sample weight, i.e., v005.
Treatment variables are aviation intensity, ranging between 0 and 1. Standard
errors are clustered at the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A30: Airline and air lead, dropping areas close to airports within 200km

Lead (µg/m3)
(1) (2) (3)

Leaded routes 0.027∗∗∗ 0.026∗∗∗

(0.007) (0.006)
All routes 0.012

(0.042)
Unleaded routes 0.034

(0.033)

Observations 100,133 100,133 100,133
R-square 0.080 0.080 0.080
Y-mean 0.108 0.108 0.108
Y-sd 0.454 0.454 0.454

Year FEs Y Y Y
Month FEs Y Y Y
DOW FEs Y Y Y
State FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: The analysis is at the monitor-day level. Outcome variables are
air lead levels from the EPA monitors, unit µg/m3. The sample covers
the years 1998-2019. Treatment variables are aviation intensity, ranging
between 0 and 1. Standard errors are clustered at the state-year level.
Significance: * 0.10, ** 0.05, *** 0.01.
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Table A31: Airline lead and fertility in DHS countries, dropping areas close to airports
within 200km

Birth dummy
(1) (2) (3)

Leaded routes -0.059∗∗∗ -0.048∗∗∗

(0.013) (0.008)
All routes -0.011

(0.009)
Unleaded routes -0.017∗

(0.009)

Observations 4,386,553 4,386,553 4,386,553
R-square 0.017 0.017 0.016
Y-mean 0.276 0.276 0.276
Y-sd 0.447 0.447 0.447

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers
the years 1998-2019. The regression is weighted by survey sample weight, i.e.,
v005. Treatment variables are aviation intensity, ranging between 0 and 1.
Standard errors are clustered at the country level. Significance: * 0.10, **
0.05, *** 0.01.

S42



Table A32: Airline and air lead, adding road intensity

Lead (µg/m3)
(1) (2) (3)

Leaded routes 0.021∗∗∗ 0.018∗∗∗

(0.007) (0.006)
All routes 0.044

(0.038)
Unleaded routes 0.037

(0.031)
Road -0.001 -0.001 -0.001

(0.001) (0.001) (0.001)

Observations 318,856 318,856 318,856
R-square 0.093 0.093 0.093
Y-mean 0.152 0.152 0.152
Y-sd 0.731 0.731 0.731

Year FEs Y Y Y
Month FEs Y Y Y
DOW FEs Y Y Y
State FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: The analysis is at the monitor-day level. Outcome variables are
air lead levels from the EPA monitors, unit µg/m3. The sample covers
the years 1998-2019. Treatment variables are aviation intensity, ranging
between 0 and 1. Standard errors are clustered at the state-year level.
Significance: * 0.10, ** 0.05, *** 0.01.
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Table A33: Airline lead and fertility in DHS countries, adding road intensity

Birth dummy
(1) (2) (3)

Leaded routes -0.066∗∗∗ -0.065∗∗∗

(0.009) (0.008)
All routes -0.001

(0.009)
Unleaded routes -0.011

(0.009)
Road -0.001∗ -0.001∗ -0.001∗∗

(0.000) (0.000) (0.000)

Observations 7,096,998 7,096,998 7,096,998
R-square 0.013 0.013 0.013
Y-mean 0.274 0.274 0.274
Y-sd 0.446 0.446 0.446

Country FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respon-
dent aged 15-29, we code her birth decision from the survey year to five years
before. The outcome variable is a dummy that equals one if this female re-
spondent gives birth in a given year and zero otherwise. The sample covers
the years 1998-2019. The regression is weighted by survey sample weight, i.e.,
v005. Treatment variables are aviation intensity, ranging between 0 and 1.
Standard errors are clustered at the country level. Significance: * 0.10, **
0.05, *** 0.01.
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Table A34: Balance table, high leaded vs. high unleaded airline intensity

Panel A: All clusters
Geo-clusters with more routes Difference

Unleaded routes Leaded routes
above median above median

(1) (2) (3)

Wealth index 2.983 3.294 -0.312∗∗∗

[1.192] [1.243] (0.074)
Education in years 5.632 6.097 -0.465∗∗

[3.718] [4.033] (0.235)
BMI 22.84 22.60 0.240

[2.448] [2.044] (0.176)
Had vaccination 0.800 0.833 -0.033∗

[0.286] [0.280] (0.019)
#Respondents 444,740 64,421

Panel B: Remote clusters 100km away from airports
Geo-clusters with more routes Difference

Unleaded routes Leaded routes
above median above median

Wealth index 2.712 2.555 0.157
[1.022] [1.076] (0.132)

Education in years 3.891 3.141 0.750
[3.692] [3.087] (0.465)

BMI 22.21 21.78 0.435
[2.081] [1.502] (0.265)

Had vaccination 0.708 0.703 0.005
[0.322] [0.325] (0.042)

#Respondents 321,469 7,288
Notes: Standard deviations are reported in brackets. Standard errors of the differences
are reported in parentheses.
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Table A35: Airline impacts on blood lead

Detect rate above 10µg/dL (‰)

Leaded routes 2.043∗∗∗ 2.001∗∗∗

(0.641) (0.635)
All routes 1.638

(3.098)
Unleaded routes -0.857

(1.741)

Observations 26,259 26,259 26,259
R-square 0.194 0.194 0.194
Y-mean 6.187 6.187 6.187
Y-sd 20.763 20.763 20.763

Year FEs Y Y Y
Census tract FEs Y Y Y
Trend Quadratic Quadratic Quadratic
Notes: The analysis is at the census tract-year level. The outcome variable
is high blood lead detect rate, calculated as the number of tested kids
with blood lead above 10µg/dL divided by the total number of tested
kids. The sample covers the years 2012-2019. X-unit is aviation intensity
ranging between 0 and 1. Standard errors are clustered at the tract-year
level. Significance: * 0.10, ** 0.05, *** 0.01.

S46



A2.3 Leaded fuel ban

Table A36: Fertility impacts of leaded gasoline bans, heterogeneity across female ages

Birth dummy
Panel A: Single difference

15-19 20-35 36-49
12.4% of the sample 79.5% 8.1%

Post 0.226∗∗∗ 0.032∗∗∗ -0.113∗∗∗

(0.006) (0.005) (0.005)

Observations 895,695 5,765,796 586,608
R-square 0.079 0.022 0.036
Y-mean 0.256 0.281 0.231
Y-sd 0.437 0.449 0.422

Panel B: Double difference

Post 0.225∗∗∗ 0.031∗∗∗ -0.113∗∗∗

(0.006) (0.005) (0.005)
Road -0.016∗∗∗ -0.019∗∗∗ -0.011∗∗∗

(0.006) (0.007) (0.003)
Post × Road 0.027∗ 0.026∗∗ 0.004

(0.014) (0.013) (0.005)

Observations 895,695 5,765,796 586,608
R-square 0.079 0.022 0.036
Y-mean 0.256 0.281 0.231
Y-sd 0.437 0.449 0.422

Adm1 FEs Y Y Y
Age, Age2 Y Y Y
Country-specific trend Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-
29, we code her birth decision from three years before to five years after the leaded fuel
ban in each country. The outcome variable is a dummy that equals one if this female
respondent gives birth in a given year and zero otherwise. The sample covers the years
1992-2021. Regression is weighted by survey sample weight, i.e., v005. Column (1) in-
cludes both geocoded and non-geocoded respondents, and Column (2)-(4) only includes
geocoded respondents. Standard errors are clustered at the country level in Column (1)-
(3) and at the adm1 level in Column (4). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A37: Fertility impacts of leaded gasoline bans, heterogeneity across nutrition levels

Birth dummy
Panel A: Single difference

1st quartile 2nd 3rd 4th
(1) (2) (3) (4)

Post 0.051∗∗∗ 0.052∗∗∗ 0.050∗∗∗ 0.030∗∗∗

(0.008) (0.008) (0.008) (0.008)

Observations 960,743 891,683 984,932 961,217
R-square 0.016 0.017 0.017 0.018
Y-mean 0.274 0.274 0.268 0.263
Y-sd 0.446 0.446 0.443 0.440

Panel B: Double difference

Post 0.051∗∗∗ 0.052∗∗∗ 0.050∗∗∗ 0.029∗∗∗

(0.008) (0.008) (0.008) (0.008)
Road -0.010∗∗∗ -0.013∗∗∗ -0.009∗∗ -0.015∗∗∗

(0.003) (0.004) (0.004) (0.004)
Post × Road 0.008∗∗ 0.009 0.011∗ 0.017∗∗

(0.004) (0.005) (0.006) (0.008)

Observations 960,743 891,683 984,932 961,217
R-square 0.016 0.017 0.017 0.018
Y-mean 0.274 0.274 0.268 0.263
Y-sd 0.446 0.446 0.443 0.440

Adm1 FEs Y Y Y Y
Age, Age2 Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29, we
code her birth decision from three years before to five years after the leaded fuel ban in each
country. The outcome variable is a dummy that equals one if this female respondent gives birth
in a given year and zero otherwise. The sample covers the years 1992-2021. We use DHS blood
protein data to classify respondents into four quartiles. Those without protein measurements
are dropped from this table. Regression is weighted by survey sample weight, i.e., v005. Col-
umn (1) includes both geocoded and non-geocoded respondents, and Column (2)-(4) only in-
cludes geocoded respondents. Standard errors are clustered at the country level in Column (1)-
(3) and at the adm1 level in Column (4). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A38: Fertility impacts of leaded gasoline bans, unweighted results

Birth dummy
Panel A: Single difference

(1) (2) (3) (4)

Post 0.075∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.048∗∗∗

(0.004) (0.011) (0.011) (0.005)

Observations 7,867,478 7,255,716 7,255,716 7,255,716
R-square 0.068 0.014 0.021 0.021
Y-mean 0.300 0.277 0.277 0.277
Y-sd 0.458 0.447 0.447 0.447

Panel B: Double difference

Post 0.048∗∗∗ 0.047∗∗∗ 0.047∗∗∗

(0.011) (0.005) (0.005)
Road -0.016∗∗∗ -0.014∗∗∗ -0.014∗∗∗

(0.005) (0.004) (0.004)
Post × Road 0.016∗ 0.016∗∗ 0.016∗

(0.009) (0.007) (0.008)

Observations 7,255,716 7,255,716 7,255,716
R-square 0.015 0.021 0.021
Y-mean 0.277 0.277 0.277
Y-sd 0.447 0.447 0.447

Country FEs Y
Adm1 FEs Y Y
Age, Age2 Y Y Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29, we
code her birth decision from three years before to five years after the leaded fuel ban in each
country. The outcome variable is a dummy that equals one if this female respondent gives birth
in a given year and zero otherwise. The sample covers the years 1992-2021. Regression is not
weighted. Column (1) includes both geocoded and non-geocoded respondents, and Column (2)-
(4) only includes geocoded respondents. Standard errors are clustered at the country level in
Column (1)-(3) and at the adm1 level in Column (4). Significance: * 0.10, ** 0.05, *** 0.01.
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Table A39: Fertility impacts of leaded gasoline bans, drop age controls

Birth dummy
Panel A: Single difference

(1) (2) (3) (4)

Post 0.072∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.006) (0.009) (0.009) (0.006)

Observations 7,859,861 7,248,099 7,248,099 7,248,099
R-square 0.069 0.014 0.021 0.021
Y-mean 0.296 0.274 0.274 0.274
Y-sd 0.457 0.446 0.446 0.446

Panel B: Double difference

Post 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.009) (0.005) (0.006)
Road -0.021∗∗ -0.017∗∗∗ -0.017∗∗∗

(0.009) (0.006) (0.006)
Post × Road 0.023 0.023∗∗ 0.023∗

(0.015) (0.011) (0.012)

Observations 7,248,099 7,248,099 7,248,099
R-square 0.014 0.021 0.021
Y-mean 0.274 0.274 0.274
Y-sd 0.446 0.446 0.446

Country FEs Y
Adm1 FEs Y Y
Country-specific trend Quadratic Quadratic Quadratic Quadratic
Notes: The analysis is at the individual-year level. For each female respondent aged 15-29, we
code her birth decision from three years before to five years after the leaded fuel ban in each
country. The outcome variable is a dummy that equals one if this female respondent gives
birth in a given year and zero otherwise. The sample covers the years 1992-2021. Regression
is weighted by survey sample weight, i.e., v005. Column (1) includes both geocoded and non-
geocoded respondents, and Column (2)-(4) only includes geocoded respondents. Standard errors
are clustered at the country level in Column (1)-(3) and at the adm1 level in Column (4). Sig-
nificance: * 0.10, ** 0.05, *** 0.01.
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Table A40: Fertility impacts of leaded gasoline bans in the US

Birth rate
Panel A: Single difference

(1) (2) (3) (4)

Post 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.005) (0.005) (0.002) (0.002)

Observations 209,775 209,775 209,775 209,775
R-square 0.154 0.511 0.511 0.541
Y-mean 0.668 0.668 0.668 0.668
Y-sd 0.156 0.156 0.156 0.156

Panel B: Double difference

Post 0.021∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.022∗∗∗

(0.006) (0.006) (0.003) (0.003)
Road -0.037 0.000 0.000 0.000

(0.024) (.) (.) (.)
Post × Road 0.044∗ 0.045∗∗ 0.045∗∗∗ 0.036∗∗∗

(0.022) (0.022) (0.011) (0.011)

Observations 209,775 209,775 209,775 209,775
R-square 0.154 0.511 0.511 0.541
Y-mean 0.668 0.668 0.668 0.668
Y-sd 0.156 0.156 0.156 0.156

State FEs Y
County FEs Y Y Y
Trend Quadratic Quadratic Quadratic State-specific

Quadratic
Notes: The analysis is at the county-year level. Outcome variable, birth rate is at the
county-year level, calculated as the number of newborns divided by the female popu-
lation aged 15-49. The sample covers 1980-2021. Road is the number of road segments
at the county level divided by 1000. Standard errors are clustered at the state level in
Column (1) and (2) and at the county level in Column (3) and (4). Standard errors are
clustered at the state level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A41: Fertility impacts of leaded gasoline bans in the US, using data 1968-2021

Birth rate
Panel A: Single difference

(1) (2) (3) (4)

Post 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗

(0.007) (0.007) (0.002) (0.002)

Observations 246,721 246,721 246,721 246,721
R-square 0.229 0.526 0.526 0.548
Y-mean 0.689 0.689 0.689 0.689
Y-sd 0.171 0.171 0.171 0.171

Panel B: Double difference

Post 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.026∗∗∗

(0.007) (0.007) (0.002) (0.002)
Road -0.057∗∗ 0.000 0.000 0.000

(0.023) (.) (.) (.)
Post × Road 0.036 0.038∗ 0.038∗∗∗ 0.078∗∗∗

(0.022) (0.023) (0.010) (0.014)

Observations 246,721 246,721 246,721 246,721
R-square 0.230 0.526 0.526 0.548
Y-mean 0.689 0.689 0.689 0.689
Y-sd 0.171 0.171 0.171 0.171

State FEs Y
County FEs Y Y Y
Trend Quadratic Quadratic Quadratic State-specific

Quadratic
Notes: The analysis is at the county-year level. Outcome variable, birth rate is at the
county-year level, calculated as the number of newborns divided by the female popu-
lation aged 15-49. The sample covers 1968-2021. Road is the number of road segments
at the county level divided by 1000. Standard errors are clustered at the state level in
Column (1) and (2) and at the county level in Column (3) and (4). Standard errors are
clustered at the state level. Significance: * 0.10, ** 0.05, *** 0.01.

S52



Table A42: Leaded gasoline bans and population

ln(Population)
-8 to 16 -5 to 10

(1) (2)

Post 0.045∗∗∗ 0.016∗∗

(0.012) (0.007)

Observations 2,975 1,936
R-square 0.998 0.999
Y-mean 16.160 16.127
Y-sd 1.847 1.832

Year FEs Y Y
Country FEs Y Y
Country-specific trend Quadratic Quadratic
Notes: We require a balanced sample at the country-year
level from 8 years before to 16 years after the ban in Col-
umn (1) and from 5 years before to 10 years after in Col-
umn (2). The number of countries is 119 in Column (1)
and 121 in Column (2). Standard errors are clustered at
the country level. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A43: Leaded gasoline bans and teen pregnancy

Adolescent fertility rate
(1) (2)

Post 5.698∗∗ 2.600∗∗∗

(2.624) (0.989)

Observations 16,430 16,430
R-square 0.891 0.982
Y-mean 74.366 74.366
Y-sd 51.280 51.280

Year FEs Y Y
Country FEs Y Y
Trend Country-specific

Quadratic
Notes: Outcome is the number of births per 1,000
women ages 15-19 at the country-year level. Standard
errors are clustered at the country level. Significance: *
0.10, ** 0.05, *** 0.01.
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